多层感知器模型(MLP)

本文介绍了多层感知器模型(MLP)的训练过程,重点在于模型参数,包括隐藏层节点数目、激活函数以及连接权重和偏置。训练目标是通过降低成本函数的值,这涉及前向传播和后向传播两个阶段。前向传播将训练数据输入模型以获取输出,而后向传播则计算成本函数并调整权重和偏置以优化模型性能,通常使用随机梯度下降算法进行优化。
摘要由CSDN通过智能技术生成
需要训练的模型参数(parameters)

num_hidden:隐藏层节点数目
activation func:隐藏层/输出层节点的激发函数
weights/biases:连接权重/偏置
MLP
* 构造成本函数cost function
训练模型的目的就是降低C值的大小。由于每一层激发函数的输出a_j是权重(weight)和偏置(bias)的函数,因此C也是权重和偏置的函数。训练模型的过程就可以转化成寻找权重和偏置的最优组合,使得C的值降到最低。通常使用随机梯度下降算法(SGD)来寻找该最优组合。
前向传播(forward propagation):将训练数据train_X输入到模型,并在输出层得到相应的输出output,此过程成为前向传播。
后向传播(backward propagation):通过输出结果output和真实的结果y_true计算出成本函数值C,进而计算出C对每一层权重和偏置的偏导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值