一、感知器(Percetron)
1、感知器
感知器是神经网络中神经元(Neuron)的基本模型,由输入、激活函数(Activation Function)和输出构成。可用于解决回归问题,和分类问题(属于线性分类器)。
2、感知器模型
其中,x为d维属性(恒为1表示偏置),w为属性对应的权重,a为属性的加权和,
为激活函数,y为感知器输出。
3、感知器缺点
单层感知器只能学习线性可分数据,无法解决布尔运算中的异或问题(XOR)!
二、多层感知器(Multi-layer Perceptrons)
1、多层感知器
为解决单层感知器存在的无法学习线性不可分的问题,引入隐藏层(hidden layer(s))。
为解决分类问题中存在的阈值函数(thresholding function)不可微的问题,引入激活函数(activation function)。
多层感知器是一个通用估计器,可以用于估计任何非线性函数。
2、多层感知器模型
多层感知器模型即为多个单层感知器的叠加,模型如下图所示。
模型与单层感知器类似,表示如下:
3、多层感知器损失函数
以L2损失函数为例
4、多层感知机优化算法
以上述两层感知器为例,使用L2损失函数,梯度下降(Gradient Descent)
其中,为激活函数的导数,
、
分别为对应参数的梯度。
三、反向传播(Backpropagation)
1、反向传播
由于梯度下降过程中,梯度中间存在依赖,因此直接推导梯度通常是不灵活的、不可行的。
反向传播则是一种高效的计算梯度的方法。
2、反向传播过程
根据链式法则,梯度计算公式如下所示。
反向传播将梯度计算拆分为正向传递(Forward pass)和反向传递 (Backward pass)两个过程,分别计算和
。
- 正向传递(Forward pass)
在正向传递的过程中,计算所有参数的:
- 反向传递 (Backward pass)
在反向传递的过程中,计算所有输出a的
可以看见计算是一个递归的过程,所以可以从输出层反向传递到输入层。
四、多层感知器实践(PyTorch)
以MNIST手写数字识别数据集为例
1、数据准备
加载MINIST数据集,并将数据转换为张量(Tensor)
train_dataset = torchvision.datasets.MNIST(root='./data', train=True,
transform=transform.ToTensor()) # 加载MNIST数据集,将图像转换为张量
Hold-out,划分训练集和验证集
train_data, valid_data, train_target, valid_target = train_test_split(train_dataset.data, train_dataset.targets,
test_size=0.33,
random_state=23) # 将数据集划分为训练集和验证集,验证集占比为0.33,随机种子为23
将训练集和验证集的数据和标签合并为张量数据集。
注意,在PyTorch中,神经网络层的权重通常为Float32,因此需要将数据转换为float。
train_dataset = TensorDataset(train_data.float(), train_target) # 将训练集的数据和标签封装为张量数据集
valid_dataset = TensorDataset(valid_data.float(), valid_target) # 将验证集的数据和标签封装为张量数据集
分别加载训练集和验证集
BATCH_SIZE = 256
train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) # 创建训练集的数据加载器,打乱顺序
valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=BATCH_SIZE, shuffle=False) # 创建验证集的数据加载器,不打乱顺序
2、训练模型
编写设备无关代码,根据是否有可用GPU,选择是否使用cuda加速。
device = "cuda" if torch.cuda.is_available() else "cpu" # 判断是否有可用的GPU,如果有则使用,否则使用CPU
定义一个MLP类,定义为两层感知机(即隐藏层+输出层),每层为一个线性层+Sigmoid激活函数。
# 定义一个多层感知机类
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__() # 调用父类的初始化方法
self.model = nn.Sequential(
nn.Linear(in_features=28 * 28, out_features=10 * 10, bias=True), # 一个线性层,输入特征为28*28(图像大小),输出特征为10*10,有偏置项
nn.Sigmoid(), # Sigmoid激活函数
nn.Linear(in_features=10 * 10, out_features=10, bias=True), # 一个线性层,输入特征为10*10,输出特征为10(类别数),有偏置项
nn.Sigmoid() # Sigmoid激活函数
)
MLP类的前向传播方法。由于线性层只改变最后一个维度,一般输入二维矩阵,因此将数据修改为(batch_size,data)的形式。
def forward(self, data):
data = data.view(data.size(0), -1) # 将数据展平为一维向量,保留第一维(批量大小)
return self.model(data)
创建模型、优化器和损失函数。
model = MLP().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 创建一个Adam优化器,学习率为0.001
lossFn = nn.CrossEntropyLoss() # 创建一个交叉熵损失函数
训练模型
EPOCH = 500
train_loss_epoch = [] # 存储每个epoch的平均损失
valid_loss_epoch = [] # 存储每个epoch的平均损失
for epoch in range(EPOCH):
print("Epoch : {}".format(epoch))
model.train() # 将模型设置为训练模式
train_loss_batch = [] # 存储每个batch的损失
for images, labels in train_dataloader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad() # 将优化器的梯度清零
outputs = model(images) # 将图像输入模型,得到输出
loss = lossFn(outputs, labels) # 计算输出和标签之间的损失
loss.backward() # 反向传播,计算梯度
optimizer.step() # 更新参数
train_loss_batch.append(loss.item())
mean_train_loss = np.mean(train_loss_batch) # 计算epoch的平均损失
train_loss_epoch.append(mean_train_loss)
print("Loss of train-set : {:.4f}".format(mean_train_loss))
model.eval() # 将模型设置为评估模式
valid_loss_batch = [] # 存储每个batch的损失
with torch.no_grad(): # 不计算梯度
for images, labels in valid_dataloader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images) # 将图像输入模型,得到输出
loss = lossFn(outputs, labels) # 计算输出和标签之间的损失
valid_loss_batch.append(loss.item())
mean_valid_loss = np.mean(valid_loss_batch) # 计算每轮验证的平均损失
valid_loss_epoch.append(mean_valid_loss)
print("Loss of valid-set : {:.4f}".format(mean_valid_loss))
可视化训练过程中损失函数的变化
plt.plot(np.arange(EPOCH), train_loss_epoch, label='Train loss')
plt.plot(np.arange(EPOCH), valid_loss_epoch, label='Valid loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig('./fig/loss_' + str(EPOCH) + '.png')
plt.clf()
结果如下:
保存模型
torch.save(model, './model/model_' + str(EPOCH) + '.pth') # 保存模型到文件中
3、评估模型
同训练集和验证集,先准备测试集数据
test_dataset = torchvision.datasets.MNIST(root='./data', train=False,
transform=transform.ToTensor()) # 加载MNIST数据集,将图像转换为张量
test_dataset = TensorDataset(test_dataset.data.float(), test_dataset.targets)
BATCH_SIZE = 256
test_dataloader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) # 创建测试集的数据加载器,不打乱顺序
加载模型
model = torch.load('./model/model_500.pth') # 加载训练好的模型
测试模型。预测值根据模型输出得分计算max()得到,max()输出结果为(max_data,index)的形式。
model.eval() # 将模型设置为评估模式
test_predicts = torch.LongTensor() # 存储预测结果
test_predicts = test_predicts.to(device)
test_labels = torch.LongTensor() # 存储真实标签
test_labels = test_labels.to(device)
with torch.no_grad(): # 不计算梯度
for images, labels in test_dataloader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
predicts = outputs.max(1, keepdim=True)[1] # 得到每个输出的最大值的索引,即预测的类别
test_predicts = torch.cat((test_predicts, predicts), dim=0) # 将预测结果拼接到张量中
test_labels = torch.cat((test_labels, labels), dim=0) # 将真实标签拼接到张量中
计算模型在测试集上准确率
test_predicts = test_predicts.view(test_predicts.size(0)) # 将预测结果展平为一维向量
accuracy = (test_predicts == test_labels).sum().item() / test_labels.size(0) # 计算预测结果和真实标签的一致性,即准确率
print("Accuracy of test-set : {:.4f}".format(accuracy))
结果如下:
Accuracy of test-set : 0.9620
使用混淆矩阵(confusion-matrix)评估模型。
print(pd.crosstab(test_labels.to('cpu').numpy(), test_predicts.to('cpu').numpy(), rownames=['Predict Value'],
colnames=['True Value'])) # 打印混淆矩阵,显示每个类别的预测和真实值的对应关系
结果如下:
True Value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Predict Value | ||||||||||
0 | 965 | 0 | 1 | 2 | 2 | 1 | 6 | 2 | 1 | 0 |
1 | 0 | 1121 | 3 | 2 | 0 | 0 | 2 | 1 | 6 | 0 |
2 | 5 | 0 | 998 | 6 | 4 | 0 | 1 | 6 | 12 | 0 |
3 | 0 | 0 | 6 | 997 | 2 | 6 | 1 | 7 | 7 | 4 |
4 | 2 | 0 | 1 | 0 | 952 | 0 | 7 | 3 | 1 | 16 |
5 | 2 | 1 | 0 | 25 | 1 | 843 | 6 | 1 | 10 | 3 |
6 | 9 | 3 | 4 | 2 | 7 | 7 | 922 | 0 | 4 | 0 |
7 | 1 | 8 | 17 | 3 | 3 | 0 | 0 | 985 | 1 | 10 |
8 | 9 | 1 | 5 | 13 | 6 | 8 | 5 | 5 | 917 | 5 |
9 | 8 | 7 | 1 | 8 | 26 | 3 | 1 | 11 | 4 | 940 |
(完整源代码见"MLP识别MNIST手写数字数据集(Pytorch)")