如何看ROC,LIFT,PR,KS曲线

本文介绍了机器学习中用于评估分类器性能的四种关键曲线:ROC曲线关注真正率和假正率,AUC值越大表示性能越好;PR曲线展示precision和recall的关系,越接近右上方性能越好;LIFT曲线衡量模型预测能力的提升,提升指数越大,效果越好;K-S曲线通过KS值判断模型区分能力,KS值大于0.2则性能尚可。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.ROC曲线

ROC(receiver operating characteristic)接受者操作特征,其显示的是分类器的真正率和假正率之间的关系

 

ROC曲线有助于比较不同分类器的相对性能,当FPR小于0.36时M1浩宇M2,而大于0.36是M2较好。

ROC曲线下面的面积为AUC(area under curve),其面积越大则分类的性能越好,理想的分类器auc=1。

一般AUC>0.8分类器还可以。 图来自https://blog.csdn.net/taoyanqi8932/article/details/54409314/

2.P-R曲线

PR(precision recall)曲线表现的是precision和recall之间的关系

当PR曲线越靠近右上方时,表明模型性能越好,与ROC曲线类似,在对不同模型进行比较时,若一个模型的PR曲线被另一个模型的PR曲线完全包住则说明后者的性能优于前者.如上图中A代表的模型要优于C代表的模型,若模型的PR曲线发生了交叉,则无法直接判断哪个模型更好.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值