1.ROC曲线
ROC(receiver operating characteristic)接受者操作特征,其显示的是分类器的真正率和假正率之间的关系
ROC曲线有助于比较不同分类器的相对性能,当FPR小于0.36时M1浩宇M2,而大于0.36是M2较好。
ROC曲线下面的面积为AUC(area under curve),其面积越大则分类的性能越好,理想的分类器auc=1。
一般AUC>0.8分类器还可以。 图来自https://blog.csdn.net/taoyanqi8932/article/details/54409314/
2.P-R曲线
PR(precision recall)曲线表现的是precision和recall之间的关系
当PR曲线越靠近右上方时,表明模型性能越好,与ROC曲线类似,在对不同模型进行比较时,若一个模型的PR曲线被另一个模型的PR曲线完全包住则说明后者的性能优于前者.如上图中A代表的模型要优于C代表的模型,若模型的PR曲线发生了交叉,则无法直接判断哪个模型更好.