题意:
给出两个1–n的全排列 p,q 。
ord(p) 为 p 在所有全排列中的字典序排名(从0开始)
ord(q) 为 q 在所有全排列中的字典序排名(从0开始)
求 排名为( ord(p) + ord(q))% n! 的全排列。
题解:
先在变进制数下表示 p ,q 的康托展开,然后在变进制数下相加(最后一次相加可能溢出,不处理,相当于对 n! 的取模),再将相加后的变进制数逆康托展开。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<set>
#define ll long long
#define pr make_pair
#define pb push_back
#define ui unsigned int
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=1000000007;
const double eps=1e-8;
const double pi=acos(-1.0);
const int maxn=200100;
const int maxm=100100;
const int up=100000;
int p[maxn],q[maxn];
int c[maxn],b[maxn];
int n,t;
void add(int x,int val)
{
for(;x<maxn;x+=(x&(-x)))
c[x]+=val;
}
int askans(int x)
{
int ans=0;
for(;x;x-=(x&(-x)))
ans+=c[x];
return ans;
}
int askpos(int x)
{
int sum=0,now=0;
for(int i=t;i>=0;i--)
{
if(now+(1<<i)<=n&&sum+c[now+(1<<i)]<x)
sum+=c[now+(1<<i)],now+=(1<<i);
}
return now+1;
}
void init(void)
{
memset(c,0,sizeof(c));
t=log2(n)+1;
for(int i=1;i<=n;i++)
add(i,1);
}
int main(void)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
p[i]++;
add(p[i],-1);
b[i]+=askans(p[i]);
}
init();
for(int i=1;i<=n;i++)
{
scanf("%d",&q[i]);
q[i]++;
add(q[i],-1);
b[i]+=askans(q[i]);
}
for(int i=n;i>=1;i--)
b[i-1]+=b[i]/(n-i+1),b[i]%=(n-i+1);
init();
for(int i=1;i<=n;i++)
{
int now=askpos(b[i]+1);
printf("%d ",now-1);
add(now,-1);
}
putchar('\n');
return 0;
}