Codeforces Round #285 (Div. 2) D. Misha and Permutations Summation (康托展开,逆康托展开,变进制数)

题目链接

题意:
给出两个1–n的全排列 p,q 。
ord(p) 为 p 在所有全排列中的字典序排名(从0开始)
ord(q) 为 q 在所有全排列中的字典序排名(从0开始)

求 排名为( ord(p) + ord(q))% n! 的全排列。

题解:
先在变进制数下表示 p ,q 的康托展开,然后在变进制数下相加(最后一次相加可能溢出,不处理,相当于对 n! 的取模),再将相加后的变进制数逆康托展开。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<set>
#define ll long long
#define pr make_pair
#define pb push_back
#define ui unsigned int
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=1000000007;
const double eps=1e-8;
const double pi=acos(-1.0);
const int maxn=200100;
const int maxm=100100;
const int up=100000;

int p[maxn],q[maxn];
int c[maxn],b[maxn];
int n,t;

void add(int x,int val)
{
    for(;x<maxn;x+=(x&(-x)))
        c[x]+=val;
}

int askans(int x)
{
    int ans=0;
    for(;x;x-=(x&(-x)))
        ans+=c[x];
    return ans;
}

int askpos(int x)
{
    int sum=0,now=0;
    for(int i=t;i>=0;i--)
    {
        if(now+(1<<i)<=n&&sum+c[now+(1<<i)]<x)
            sum+=c[now+(1<<i)],now+=(1<<i);
    }
    return now+1;
}

void init(void)
{
    memset(c,0,sizeof(c));
    t=log2(n)+1;
    for(int i=1;i<=n;i++)
        add(i,1);
}

int main(void)
{
    scanf("%d",&n);
    init();
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&p[i]);
        p[i]++;
        add(p[i],-1);
        b[i]+=askans(p[i]);
    }
    init();
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&q[i]);
        q[i]++;
        add(q[i],-1);
        b[i]+=askans(q[i]);
    }
    for(int i=n;i>=1;i--)
        b[i-1]+=b[i]/(n-i+1),b[i]%=(n-i+1);
    init();
    for(int i=1;i<=n;i++)
    {
        int now=askpos(b[i]+1);
        printf("%d ",now-1);
        add(now,-1);
    }

    putchar('\n');
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值