文献阅读 - Distance Metric Learning for Large Margin Nearest Neighbor Classification

本文介绍了一种针对kNN分类器的度量学习方法,旨在通过优化马氏距离度量,确保同类样本间的距离最小,不同类样本间距离大于预设余量。这种大余量最近邻(LMNN)分类方法与支持向量机有相似之处,通过凸优化问题求解最佳线性变换。实验表明,学习到的距离度量能有效提升kNN的分类性能。
摘要由CSDN通过智能技术生成

Distance Metric Learning for Large Margin Nearest Neighbor Classification


Weinberger K Q . Distance Metric Learning for Large Margin Nearest Neighbor Classification[J]. NIPS, 2005.


摘要

度量(metric)学习的目标是使得 k k k个最近邻样本总是属于同一类别,且不同类别样本之间的距离很大。

无需修改即可处理多分类(multiway)问题

1 引言

kNN分类器对未标记样本的分类规则为:训练集中与其最近的 k k k个样本投票表决,因此kNN分类器的性能取决于其采用的距离度量(distance metric)。

通常kNN分类器采用欧氏距离(Euclidean distance metric)衡量样本相似度,然而,欧氏距离完全不考虑训练集数据的统计特性。

相关文献指出:从标注样本中学习得到的距离度量,能够显著提高kNN的分类能力。

本文给出一种针对kNN分类器的马氏距离度量(Mahanalobis distance metric)学习方案,该度量的优化目标是 k k k个最近邻样本总是属于同一类别,且不同类别样本之间的距离不小于某一余量(large margin)。

大余量最近邻(large margin nearest neighbor,LMNN)分类

2 模型

训练集为 { x i , y i } i = 1 n \left\{\mathbf{x}_{i}, y_{i} \right\}_{i = 1}^{n} { xi,yi}i=1n,其中样本 x i ∈ R d \mathbf{x}_{i} \in \mathcal{R}^{d} xiRd,标签 y i y_{i} yi为离散类别;

二进制矩阵 y i j ∈ { 0 , 1 } y_{ij} \in \{0, 1\} yij{ 0,1}表示标签 y i y_{i} yi y j y_{j} yj是否相同;

通过学习线性变换(linear transformation) L : R d → R d \mathbf{L}: \mathcal{R}^{d} \rightarrow \mathcal{R}^{d} L:RdRd,并将其用于计算平方距离:

(1) D ( x i , x j ) = ∥ L ( x i , x j ) ∥ 2 \mathcal{D}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \| \mathbf{L}(\mathbf{x}_{i}, \mathbf{x}_{j}) \|^{2} \tag{1} D(xi,xj)=L(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值