Distance Metric Learning for Large Margin Nearest Neighbor Classification
Weinberger K Q . Distance Metric Learning for Large Margin Nearest Neighbor Classification[J]. NIPS, 2005.
摘要
度量(metric)学习的目标是使得 k k k个最近邻样本总是属于同一类别,且不同类别样本之间的距离很大。
无需修改即可处理多分类(multiway)问题
1 引言
kNN分类器对未标记样本的分类规则为:训练集中与其最近的 k k k个样本投票表决,因此kNN分类器的性能取决于其采用的距离度量(distance metric)。
通常kNN分类器采用欧氏距离(Euclidean distance metric)衡量样本相似度,然而,欧氏距离完全不考虑训练集数据的统计特性。
相关文献指出:从标注样本中学习得到的距离度量,能够显著提高kNN的分类能力。
本文给出一种针对kNN分类器的马氏距离度量(Mahanalobis distance metric)学习方案,该度量的优化目标是 k k k个最近邻样本总是属于同一类别,且不同类别样本之间的距离不小于某一余量(large margin)。
大余量最近邻(large margin nearest neighbor,LMNN)分类
2 模型
训练集为 { x i , y i } i = 1 n \left\{\mathbf{x}_{i}, y_{i} \right\}_{i = 1}^{n} { xi,yi}i=1n,其中样本 x i ∈ R d \mathbf{x}_{i} \in \mathcal{R}^{d} xi∈Rd,标签 y i y_{i} yi为离散类别;
二进制矩阵 y i j ∈ { 0 , 1 } y_{ij} \in \{0, 1\} yij∈{ 0,1}表示标签 y i y_{i} yi和 y j y_{j} yj是否相同;
通过学习线性变换(linear transformation) L : R d → R d \mathbf{L}: \mathcal{R}^{d} \rightarrow \mathcal{R}^{d} L:Rd→Rd,并将其用于计算平方距离:
(1) D ( x i , x j ) = ∥ L ( x i , x j ) ∥ 2 \mathcal{D}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \| \mathbf{L}(\mathbf{x}_{i}, \mathbf{x}_{j}) \|^{2} \tag{1} D(xi,xj)=∥L(