读书笔记 - Python数据分析与挖掘实战 - 4 数据预处理

本文介绍了Python数据分析中数据预处理的重要性,包括数据清洗(缺失值处理如拉格朗日插值、牛顿插值,异常值处理)、数据集成(实体识别、冗余属性识别)、数据变换(如规范化、连续特征离散化、小波变换)等关键步骤,强调了数据预处理在数据挖掘过程中的核心地位。

第4章 数据预处理

数据预处理主要包括数据洁洗、数据集成、数据变换和数据规约等操作,数据预处理通常占整个数据挖掘过程的60%。

在这里插入图片描述

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from sklearn.cluster import KMeans
from scipy.interpolate import lagrange
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

4.1 数据清洗

数据清洗主要包括(1)删除原始数据集中的无关、重复数据,(2)平滑噪声数据,(3)筛除与挖掘主题无关的数据,(4)处理缺失值、异常值等。

4.1.1 缺失值处理

缺失值处理方法可分为:(1)删除记录,(2)数据插补,(3)不处理。

在这里插入图片描述

如果删除小部分记录也能够达到既定目标,则删除含有缺失值记录的方法最有效。

(1)拉格朗日插值法

已知平面上的nnn个点,可以找到一个n−1n-1n1次多项式y=a0+a1x+a2x2+⋯+an−1xn−1y = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n - 1} x^{n - 1}y=a0+a1x+a2x2++an1xn1,使这nnn个点位于该多项式曲线上。己知nnn点坐标(x1,y1),(x2,y2),⋯ ,(xn,yn)(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)(x1,y1),(x2,y2),,(xn,yn)的,则n−1n-1n1次拉格朗日插值多项式为:

L(x)=∑i=0nyi∑j=0,j̸=inx−xixi−xjL(x) = \sum_{i = 0}^{n} y_i \sum_{j = 0, j \not = i}^{n} \frac{x - x_i}{x_i - x_j}L(x)=i=0nyij=0,j̸=inxixjxxi

拉格朗日插值公式结构紧凑,但当插值节点增减时,插值多项式各项均会随之变化。

(2)牛顿插值法

求己知nnn点坐标(x1,y1),(x2,y2),⋯ ,(xn,yn)(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)(x1,y1),(x2,y2),,(xn,yn)的所有阶差商公式:

f[x1,x]=f[x]−f[x1]x−x1=f(x)−f(x1)x−x1f[x2,x1,x]=f[x1,x]−f[x2,x1]x−x2f[x3,x2,x1,x]=f[x2,x1,x]−f[x3,x2,x1]x−x3⋯f[xn,xn−1,⋯ ,x1,x]=f[xn−1,⋯ ,x1,x]−f[xn,⋯ ,x2,x1]x−xn\begin{aligned} f[x_1, x] = & \frac{f[x] - f[x_1]}{x - x_1} = \frac{f(x) - f(x_1)}{x - x_1} \\ f[x_2, x_1, x] = & \frac{f[x_1, x] - f[x_2, x_1]}{x - x_2} \\ f[x_3, x_2, x_1, x] = & \frac{f[x_2, x_1, x] - f[x_3, x_2, x_1]}{x - x_3} \\ & \cdots \\ f[x_n, x_{n - 1}, \cdots, x_1, x] = & \frac{f[x_{n - 1}, \cdots, x_1, x] - f[x_n, \cdots, x_2, x_1]}{x - x_n} \\ \end{aligned}f[x1,x]=f[x2,x1,x]=f[x3,x2,x1,x]=f[xn,xn1,,x1,x]=xx1f[x]f[x1]=

92讲视频课+16大项目实战+课件源码  为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。      从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。   本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。  二、基础篇: 围绕Python基础语法介绍、数据预处理数据可视化以及数据分析挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。 三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。  四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。  五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值