高性能计算的发展

本文探讨了高性能计算的历史、现状及其在各领域的应用,如气候模拟、核爆模拟等。高性能计算面临着计算需求增加、系统扩展性、能耗、可靠性和应用效率等挑战。未来发展方向包括应用导向的高性能计算机、面向新兴应用的高通量计算、HPC in Cloud 和新兴技术的机遇。中国在高性能计算方面取得了一定成就,但在软件和应用方面仍有提升空间。
摘要由CSDN通过智能技术生成

摘要

继理论科学和实验科学之后,高性能计算成为人类科学研究的第三大范式。作为科技创新的重要手段,高性能计算广泛应用于核爆模拟、天气预报、工程计算等众多领域,是当代科技竞争的战略制高点,集中体现一个国家的综合实力。本文介绍高性能计算发展的历史和现状,分析当前高性能计算所面临的问题和挑战,探讨高性能计算未来的发展方向。

利用大量处理单元的聚合计算能力来解决复杂问题,是高性能计算(high performance computing,HPC)最直观的定义。高性能计算已成为继理论科学和实验科学之后科学探索的第三范式,被广泛应用在高能物理研究、核武器设计、航天航空飞行器设计、国民经济的预测和决策、能源勘探、中长期天气预报、卫星图像处理、情报分析、互联网服务、工业仿真等领域,对国民经济发展和国防建设具有重要的价值。它作为世界高技术领域的战略制高点,已经成为科技进步的重要标志之一,同时也是一个国家科技综合实力的集中体现。

本文介绍高性能计算的发展现状,分析现在高性能计算面临的挑战,探讨中国高性能计算未来的发展方向。

   

高性能计算的发展现状

 高性能计算作为计算机科学的一个分支,致力于开发高性能计算机和运行在高性能计算机上的应用软件。回顾历史,高性能计算作为一个强大的计算工具,与科学研究的发展密不可分。一方面,科学研究对计算能力永无止境的需求促进了高性能计算技术向前发展;另一方面,高性能计算技术的每一次巨大进步都为科学研究提供了全新的手段。

   

1)永无止境的计算需求

在近代科学研究中,单靠理论和实验解决问题的难度逐渐增大,数值运算的方法被用来模拟物理世界,以求解复杂的问题,计算科学成为自然科学研究的必备工具。随着求解问题规模的越来越大,对计算能力的需求成为驱动高性能计算发展最直接的动力。

   

第二次世界大战时期,靠人力计算火炮的弹道非常困难,战争对计算能力的需要促进了第一台电子计算机的诞生;早期的高性能计算机主要应用于解决军事领域的计算问题,如美国在1960年代使用CDC超级计算机进行弹道计算、火箭设计等工作[1]。20世纪90年代中期以后,随着机群技术构建的高性能计算机的普及,高性能计算的成本和编程的复杂度大幅度下降,为高性能计算的广泛使用创造了条件。如图1[2]所示,现在高性能计算已经渗透到各个学科领域,不仅在气候模拟、石油勘探、天体物理这些传统应用领域保持强劲的生命力,在生命科学、人工智能、大数据处理这些新兴领域也有广泛的应用。

   


图1  2014 年全球高性能应用领域分布

 

在传统应用领域,如天气预报、石油勘探、核爆模拟等,计算问题一般采用划分网格的方式来解决,随着应用的物理建模不断精细,数值模拟分辨率越来越高,对计算能力的要求也越来越高。以气候模拟与天气预报为例,建立模拟气候变化的模型是一个非常有挑战性的工作,它需要模拟巨量的实体间相互作用,同时还需要在不同的时间和空间维度上进行分析,一般使用数十亿个非线性方程从不同的维度描述各种物理过程。如图2[3]所示,现在比较成熟的全球气候模拟模型一般采用100~200 km的网格,它对地形效应、细粒度水文状况的模拟能力很弱;最新出现的模型采用20~50 km的网格,在此分辨率下可以得到很大的改善,但需要强大得多的计算能力才能求解。如果将每个空间维度上的分辨率再提升1倍,则总的计算能力至少需要提升8倍。据分析,如果将模型的分辨率提升到1 km,则相应的计算能力需要提升100~1000倍,这需要未来将高性能计算机的计算能力由现在的P级升级为E级(1018)。

   


图2  IPCC 评估报告中所使用气候模型的空间分辨率

 

天气预报一般采用更高级的对流解析有限域模型,在未来很长一段时间内,实现1 km    水平分辨率的对流运动模型是气象领域的一项重要工作。高分辨率的模型可以直接地求解对流系统的问题,模拟结果可以更好的展示地形效应、海洋大气能力转移过程,并且可以获得更详细的区域气候情况。这些高分辨率的模拟结果能帮助我们更好地理解全球变暖对天气的影响,同时可以利用对区域气候的模拟来评估极端天气事件对社会的影响。

   

激光聚变数值模拟对计算能力有着相似的需求。为了模拟内爆过程中辐射流体力学界面不稳定性的演化,100 个波长的模拟是最低的要求。对单模模型,每个波长至少需要10个网格,则单个方向需要1000个网格,三维模拟总共需要109 个网格。对多模模型,为了分辨单个扰动模,每个波长需要50个网格,如果模拟200个波长,需要的网格总数约为1012个?[4]。当前,千万亿次计算机的CPU核数为104~105量级,勉强可满足单模模型的需求,但模拟多模模型是目前千万亿次计算机难以承受的,计算能力至少需要有两个量级的提升,需要更高性能的计算机。

   

在非传统的新兴应用领域,如生命科学、人工智能、大数据处理,这些应用的负载很多都是基于图模型和图算法来处理数据,而复杂的图结构的规模非常庞大。例如,在娃娃鱼基因组测序中,对应De Brujin 图有超过1013 个顶点,测序技术的发展对计算能力的需求不断提高。

   

深度学习是新兴领域中另一个典型代表。深度学习技术试图通过大规模的神经网络和大数据提供的海量训练集合,将大脑学习识别的过程加以抽象,从而获得极高的识别准确度,这些都带

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值