论文阅读
文章平均质量分 89
盏云
这个作者很懒,什么都没留下…
展开
-
【深度学习】语义分割:论文阅读:(2021-12)Mask2Former
论文:Masked-attention Mask Transformer for Universal Image Segmentation代码:官方-代码代码视频:b站论文讲解笔记参考:翻译版Mask2Former在MaskFormer的基础上,本文的改进呢**主要是mask attention还有high-resolution features,**本质上是一个金字塔,剩下的一些关于训练上的还有optimization上改进呢,能够提高训练速度masked attention我们知道dec原创 2022-06-04 11:23:58 · 8761 阅读 · 1 评论 -
【深度学习】语义分割:论文阅读(NeurIPS 2021)MaskFormer: per-pixel classification is not all you need
目录详情知识补充语义分割实例分割动机Related WorksPer-pixel classification formulationMask classification formulationMaskFormerPixel-level moduleTransformer moduleSegmentation module掩膜分类推理语义推理详情论文:Per-Pixel Classification is Not All You Need for Semantic Segmentation / Mas原创 2022-06-01 19:26:22 · 6068 阅读 · 1 评论 -
【深度学习】语义分割:论文阅读:(CVPR 2022) MPViT(CNN+Transformer):用于密集预测的多路径视觉Transformer
这里写目录标题0详情1摘要2 主要工作3 网络结构3.1 Conv-stem3.2 Multi-Scale Patch Embedding3.3 Multi-path Transformer3.3.1 多路径Transformer和局部特征卷积CoaT的因素分解自注意深度可分离卷积3.3.2Global-to-Local Feature Interaction4 实验- Semantic segmentation5总结0详情论文:MPViT : Multi-Path Vision Transformer原创 2022-05-31 15:41:13 · 9672 阅读 · 2 评论 -
【深度学习】语义分割:论文阅读(没太懂):(2022-1)Lawin Transformer:大窗口注意力改进多尺度表示的语义分割
目录详情详情论文代码原创 2022-05-19 19:38:25 · 2782 阅读 · 2 评论 -
【深度学习】(ICCV-2021)PVT-金字塔 Vision Transformer及PVT_V2
目录详情详情名称:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions论文:原文代码:官方代码笔记参考:1.语义分割中的Transformer(第三篇):PVT — 用于密集预测任务的金字塔 Vision Transformer...原创 2022-05-17 20:02:32 · 9077 阅读 · 5 评论 -
【深度学习】名词解释
这里写目录标题0.详情0.详情名称:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation时间:2018单位:Robin A. M. Strudel论文:论文代码:paperwithcode的代码笔记参考:原创 2022-05-07 19:51:58 · 2229 阅读 · 0 评论 -
【深度学习】语义分割-综述(卷积)
这里写目录标题0.笔记参考1. 目的2. 困难点3. 数据集及评价指标3.1数据集3.2评价指标4.实现架构5. 模型发展5.1基于全卷积的对称语义分割模型5.1.1FCN(2014/11/14)5.1.1.1具体过程5.1.1.2 CNN 与 FCN5.1.1.3全连接层 -> 成卷积层5.1.1.4 upsampling5.1.1.5局限5.1.2 SegNet(2015/11/2)5.1.2.1 结构5.1.2.2 decoder变体SegNet-Basic5.1.2.3 对比SegNet和FC原创 2022-05-07 18:57:16 · 3285 阅读 · 1 评论 -
【深度学习】论文阅读:(ICCV-2021))Segmenter:Transformer for Semantic Segmentation
这里写目录标题详情详情名称:Segmenter:Transformer for Semantic Segmentation时间: last revised 2 Sep 2021 (this version, v3)]单位:Robin A. M. Strudel论文:论文代码:原创 2022-04-29 17:05:25 · 3370 阅读 · 2 评论 -
论文阅读框架
这里写目录标题参考框架一框架二信息简介创新点AbstractMethodExperiments参考1.如何读论文2.框架一 swim3.框架二 Segmenting框架一摘要论文速读1.论文试图解决什么问题?2.这是否是一个新问题?3.这篇文章要验证一个什么科学假设?4.有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?5.论文中提到的解决方案之关键是什么?6.论文中的实验是如何设计的?7.用于定量评估的数据集是什么?代码有没有开源?8.论文中的实验及结果有没有原创 2022-04-28 17:52:18 · 203 阅读 · 0 评论 -
【深度学习】语义分割-论文阅读:( NeurIPS 2021 )SegFormer
这里写目录标题0.详情1.动机2. 改进点3.相关工作4. Method4.1 Hierarchical Transformer Encoder4.1.1 分层特性表示(Hierarchical Feature Representation)4.1.2 重叠合并(Overlapped Patch Merging)4.1.3 自注意机制(Efficient Self-Attention)4.1.4 混合前馈网络(Mix-FFN)4.2 Lightweight ALL-MLP DecoderALL-MLP解码结原创 2022-04-26 11:28:30 · 3778 阅读 · 0 评论 -
【深度学习】论文阅读:(ICCV-2021))Swin Transformer
这里写目录标题论文详情VIT缺点改进点核心思想整体结构名称解释 Window、Patch、Token与vit区别结构过程Patch EmbeddingBasicLayerPatch MergingSwin Transform Block==Window Attention==Shifted Window Attention总结论文详情名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows地址:原论文代码:原创 2022-03-17 19:39:22 · 7454 阅读 · 0 评论 -
【深度学习】步态识别-论文阅读:(ICCV-2021)用于步态识别的上下文敏感时间特征学习
这里写目录标题论文详情论文详情名称:GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set发表:2021Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Journal version of arXiv:1811.06186 (AAAI 2019).论文地址:原论文...原创 2022-03-03 17:18:22 · 5594 阅读 · 0 评论 -
深度学习:cv-论文阅读笔记
这里写目录标题笔记参考笔记参考顾道长生-博客顾道长生-公众号原创 2022-03-01 11:07:08 · 655 阅读 · 0 评论 -
【深度学习】步态识别-论文阅读:(ICCV-2021)通过有效的全局-局部特征表示和局部时间聚合进行步态识别
这里写目录标题论文详情Abstract1. Introduction2 主要贡献3 Proposed Method3.1 Overview3.2 Local Temporal Aggregation3.3 Global and Local Feature Extractor3.4 Feature Mapping3.5 Loss Function4 Conclusion论文详情论文题目:Gait Recognition via Effective Global-Local Feature Represe原创 2022-01-21 00:38:27 · 4353 阅读 · 1 评论 -
深度识别:论文阅读_2S-AGCN CVPR2019(基于骨架的动作识别的两流自适应图卷积网络)
这里写目录标题资料过去问题主要贡献自适应图卷积层自适应图卷积块自适应图卷积网络双流网络资料论文:论文源码:代码过去问题图的拓扑是手动设置的,并且固定在所有图层和输入样本上骨骼数据的二阶信息(骨骼的长度和方向)对于动作识别自然是更有益和更具区分性的,在现有方法中很少进行研究。ST-GCN图形构建过程中三个缺点:1.使用的骨架图是启发式预定义的,仅表示人体物理结构,对动作识别不是最佳。例如读书和拍手,两只手的关系很重要,但是ST-GCN预定义的人体图中彼此距离很远,很难捕获两只手的关系;原创 2021-11-25 16:58:36 · 4406 阅读 · 0 评论 -
深度学习-论文阅读:动作结构性图卷积网络AS-GCN
这里写目录标题过去问题:改进创新点整体结构Actional Links (A-links)过去问题:基于关节间的固定骨架只捕捉关节间局部的物理依赖性改进对ST-GCN的一个较大的改进,都是利用图卷积网络进行行为识别。不同的是ST-GCN仅仅关注于18个关节点的骨架图上物理相邻关节点之间的关系。而本文在前者的基础上不但关注了物理相邻的关节点,而且更加注重在物理空间上不相邻关节点之间的依赖关系。解决了以下ST-GCN的缺点:1.提取通过骨骼直接连接的关节的特征,但忽略了可能包含关键模式的遥远关节原创 2021-11-25 13:44:03 · 2112 阅读 · 0 评论