【深度学习】CNN+Transformer汇总

参考

1.CNN+Transformer算法总结

前言

  • 总结了2021年以来,所有将CNN与Transformer框架结合的CV算法
  • 在卷积神经网络(CNN)中,卷积运算擅长提取局部特征,但在捕获全局特征表示方面还是有一定的局限性。 在Vision Transformer中,级联自注意力模块可以捕获长距离的特征依赖,但会忽略局部特征的细节

cnn与transformer

CNN具有非常良好的性能。这在很大程度上归因于卷积操作,
优点:它以分层的方式收集局

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值