《人工智能安全:挑战与破局之路》
一、人工智能安全现状
人工智能应用中的安全问题频现。当前,人工智能在多个领域广泛应用,但其安全问题也日益凸显。例如,模型中毒是一种常见的安全威胁,恶意行为者可以向模型中注入恶意数据,导致模型做出错误决策,就像工程图像可能欺骗机器学习模型,将猫的图像标记为老鼠。隐私泄露也是一个重大问题,随着人工智能的发展,个人隐私信息的保护变得尤为重要。用户往往不知道自己的数据是否被用于人工智能算法,而攻击者可能会利用恶意软件窃取敏感数据集,如信用卡号码或社会安全号码等个人信息。数据篡改同样带来巨大风险,在 AI 规模化应用背景下,数据容易被恶意行为者操纵或篡改,同时算法偏见也成为一个难题,目前行业还未找到有效的解决方案。内部威胁也是不可忽视的安全隐患,内部人员可能出于各种原因,如报复、好奇心或人为错误等,对系统造成严重损害。针对性蓄意攻击可能会破坏公司的竞争能力,而大规模采用人工智能也使得黑客有更多机会干扰程序的输入和输出。此外,AI 驱动的攻击也日益增多,恶意攻击者将人工智能武器化,设计和实施攻击。
以人工智能隐私泄露为例,其危害不容小觑。个人信息被滥用可能导致网络诈骗、恶意营销甚至人身攻击等,企业声誉受损会影响正常运营和客户信心,国家安全也可能受到威胁。为防范隐私泄露,需要加强法律法规的制定和执行,政府应规范人工智能技术的发展和应用,加强网络安全监管。企业要加强自律,遵守法律法规和道德规范,保护用户隐私权和信息安全。个人在使用人工智能设备时应提高警惕,注意保护自己的隐私信息。
人工智能应用还面临着其他数据安全威胁。在 “AI + 安全开发” 方面,基于大模型的代码助手可提高开发人员效率并检测安全漏洞;在 “AI + 终端安全” 方面,产品能快速分析并识别各种代码。然而,目前提升人工智能安全的手段还不够,亟需研究通用性强、效率高的对抗样本防御办法。
此外,人工智能新时代面临三大安全威胁。一是 AI “饱和式” 攻击打垮网络安全运营体系,让政企机构陷入 “攻强守弱” 的境地;二是 AI 深度伪造引发社会混乱,冒用身份进行网络欺诈,可能引发社会认知混乱;三是 AI 投毒污染数据冲击安全防线,黑客利用 AI 升级攻击手段,使 AI 算法产生错误判断且难以检测和防范。
在全球化背景下,人工智能安全治理面临困境。各国在人工智能领域展开政策竞赛、战略竞赛、规则竞赛,试图建立优势,这导致治理体系复杂且困难。以国家信任为基础构建全球人工智能安全治理显得尤为迫切,国家信任分为理性信任、价值信任和环境信任,能够增强各国在人工智能领域的合作信心,推动技术创新与安全保障并行发展。
我国也在积极提升人工智能安全检测能力,通过梳理政策背景、安全风险和能力现状,提出治理建议,以保障人工智能与实体经济融合发展和安全应用。目前,人工智能安全风险主要包括数据安全风险、算法模型安全风险、基础设施安全风险和应用安全风险等四类。
总之,当前人工智能应用中的安全问题频现,需要全行业高度关注并找到有效的应对方法,以确保人工智能技术的健康发展和安全应用。
二、人工智能安全面临的挑战
(一)技术层面的挑战
-
模型易受攻击
- 对抗样本攻击:在图片中加入噪声或在文章中改变一个字母,就可能干扰人工智能的识别模型,让机器出现错误认知。例如,在交通标识牌上贴上一些标签,人工智能可能就识别不出 “停止” 的意思,而会识别成 “限速 4