优化理论及应用精解【2】

文章目录

仿射与对偶

内积基础

  • 设 R n 为由实 n 元组 x = ( ξ 1 , ξ 2 , . . . , ξ n ) 组成的向量空间。 设R^n为由实n元组x=(\xi_1,\xi_2,...,\xi_n)组成的向量空间。 Rn为由实n元组x=(ξ1,ξ2,...,ξn)组成的向量空间。
  • 两向量 x 与 x ∗ 在 R n 中的内积表示为: 两向量x与x^*在R^n中的内积表示为: 两向量xxRn中的内积表示为:
    < x , x ∗ > = ξ 1 ξ 1 ∗ + ξ 2 ξ 2 ∗ + . . . + ξ n ξ n ∗ <x,x^*>=\xi_1\xi_1^*+\xi_2\xi_2^*+...+\xi_n\xi_n^* <x,x>=ξ1ξ1+ξ2ξ2+...+ξnξn
  • 向量内积(也称为点积或标量积)是线性代数中一个非常重要的概念,它描述了两个向量之间的某种“相互作用”或“夹角”关系。对于两个n维向量 a = ( a 1 , a 2 , … , a n ) \mathbf{a} = (a_1, a_2, \ldots, a_n) a=(a1,a2,,an) b = ( b 1 , b 2 , … , b n ) \mathbf{b} = (b_1, b_2, \ldots, b_n) b=(b1,b2,,bn),它们的内积定义为:

a ⋅ b = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n ab=a1b1+a2b2++anbn

或者,使用求和符号表示为:

a ⋅ b = ∑ i = 1 n a i b i \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_ib_i ab=i=1naibi

向量内积具有以下几个重要性质:

  1. 交换律 a ⋅ b = b ⋅ a \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} ab=ba
  2. 分配律 ( a + c ) ⋅ b = a ⋅ b + c ⋅ b (\mathbf{a} + \mathbf{c}) \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{b} (a+c)b=ab+cb
  3. 数乘结合律 k ( a ⋅ b ) = ( k a ) ⋅ b = a ⋅ ( k b ) k(\mathbf{a} \cdot \mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (k\mathbf{b}) k(ab)=(ka)b=a(kb),其中 k k k是标量。
  4. 零向量 a ⋅ 0 = 0 \mathbf{a} \cdot \mathbf{0} = 0 a0=0,其中 0 \mathbf{0} 0是零向量。
  5. 与自身内积 a ⋅ a = ∥ a ∥ 2 \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2 aa=a2,其中 ∥ a ∥ \|\mathbf{a}\| a是向量 a \mathbf{a} a的模(长度)。

向量内积的几何意义在于,它等于两个向量的模与它们之间夹角的余弦的乘积,即:

a ⋅ b = ∥ a ∥ ∥ b ∥ cos ⁡ θ \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta ab=a∥∥bcosθ

其中, θ \theta θ是两个向量之间的夹角( 0 ≤ θ ≤ π 0 \leq \theta \leq \pi 0θπ)。这个公式揭示了向量内积与向量长度和它们之间夹角的关系。

向量内积在物理和工程中有广泛的应用,比如计算力所做的功、电场中电荷的势能等。

  • A 表示映射 R n 到 R m 的线性变换 x → A x ,转置矩阵和映射 R m 到 R n 的相应伴随线性变换记为 A ∗ A表示映射R^n到R^m的线性变换x\rightarrow Ax,转置矩阵和映射R^m到R^n的相应伴随线性变换记为A^* A表示映射RnRm的线性变换xAx,转置矩阵和映射RmRn的相应伴随线性变换记为A
    < A x , y ∗ > = < x , A ∗ y ∗ > <Ax,y^*>=<x,A^*y^*> <Ax,y>=<x,Ay>

仿射

仿射的定义

仿射(Affine Mapping)也称为仿射变换(Affine
Transformations),是指在一个向量空间上先进行一次线性变换,再进行一次平移变换的复合变换。这种变换在数学、物理学、计算机科学等领域中都有广泛应用。仿射变换能够保持图形的平行性、共线性等几何性质,但可能会改变图形的大小、形状和方向。

仿射的性质

  1. 线性变换性质:仿射变换中的线性部分保持了向量的线性关系,即变换前后向量的线性组合关系不变。
  2. 平移不变性:仿射变换中的平移部分使得图形在平面或空间中移动,但图形的形状和大小不变。
  3. 平行性保持:仿射变换不会改变图形中直线之间的平行关系。
  4. 共线性保持:仿射变换前后,共线的点仍然共线。
  5. 比例关系保持:仿射变换中,平行线段(或同一直线上的两线段)的长度之比保持不变。
  6. 面积比与仿射变积系数之比的关系:在同一仿射变换下,对应图形的面积比与仿射变积系数之比有关。

仿射的计算

仿射变换的计算通常涉及到一个变换矩阵和一个平移向量。对于二维空间中的点 ( x , y ) (x, y) (x,y),经过仿射变换后变为新的点 ( x ′ , y ′ ) (x', y') (x,y),其变换公式可以表示为:

[ x ′ y ′ 1 ] = [ a b c d e f 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} =\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = ad0be0cf1 xy1

其中,矩阵

[ a b d e ] \begin{bmatrix} a & b \\ d & e \end{bmatrix} [adbe]

表示线性变换部分,而向量

[ c f ] \begin{bmatrix} c \\ f \end{bmatrix} [cf]

表示平移变换部分。这种表示方法通过齐次坐标系统使得平移变换也可以通过矩阵乘法来实现。

仿射的例子

  1. 椭圆到圆的变换:通过仿射变换,可以将椭圆变换为圆。例如,对于椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1,可以通过变换 x ′ = x a , y ′ = y b x' = \frac{x}{a}, y' = \frac{y}{b} x=ax,y=by将其变为单位圆 x ′ 2 + y ′ 2 = 1 x'^2 + y'^2 = 1 x′2+y′2=1。这种变换有助于利用圆的良好几何性质来简化问题。
  2. 图像的缩放、旋转和平移:在图像处理中,仿射变换常用于图像的缩放、旋转和平移等操作。通过调整变换矩阵中的参数,可以实现图像的多种变换效果。

仿射的例题

例题:设椭圆 E E E的中心为坐标原点,对称轴为 x x x轴和 y y y轴,且过点 A ( 0 , − 2 ) A(0, -2) A(0,2) B ( 3 2 , − 1 ) B(\frac{3}{2}, -1) B(23,1)。求 E E E的方程,并设过点 P ( 1 , − 2 ) P(1, -2) P(1,2)的直线交 E E E M , N M, N M,N两点,过 M M M且平行于 x x x轴的直线与线段 A B AB AB交于点 T T T。点 H H H满足 M T ⃗ = T H ⃗ \vec{MT} = \vec{TH} MT =TH ,证明直线 H N HN HN过定点。

证明

  1. 首先求出椭圆 E E E的方程。根据已知条件,可以列出方程组求解得到 a a a b b b的值,进而得到椭圆方程。
  2. 接下来进行仿射变换。设 x ′ = x a , y ′ = y b x' = \frac{x}{a}, y' = \frac{y}{b} x=ax,y=by,将椭圆 E E E变换为单位圆 C : x ′ 2 + y ′ 2 = 1 C: x'^2 + y'^2 = 1 C:x′2+y′2=1。同时,点 A , B , P A, B, P A,B,P也变换为新的坐标点 A ′ , B ′ , P ′ A', B', P' A,B,P
  3. 利用圆的几何性质进行证明。在圆 C C C中,利用垂径定理、切线性质等几何定理,可以证明变换后的图形满足题目要求的性质。
  4. 最后,由于仿射变换保持平行关系、共线性等几何性质,因此可以将证明结果逆变换回原坐标系,从而证明原命题成立。

注意:上述例题仅为一个示例,实际证明过程可能需要根据具体题目条件进行调整。

对偶

对偶是一个在数学、语言学和射影几何等多个领域中都有涉及的概念,但不同领域的对偶含义和计算方式有所不同。以下详细解释对偶的定义、计算、例子和例题,主要集中在数学和射影几何领域。

一、对偶的定义

  1. 数学中的对偶

    • 在数学中,对偶通常指的是两种结构或对象之间存在的一种自然、对称且相互关联的关系。
    • 在线性代数和向量空间中,对偶空间是一个重要的概念,它包含了原向量空间上所有线性函数的集合。这些线性函数被称为对偶向量或协向量,它们能够接收一个向量作为输入并输出一个标量。
  2. 射影几何中的对偶

    • 在射影几何中,对偶运算是将基本元素(如点和直线)间的结合关系换为其对偶元素的结合关系的一种方法。
    • 在射影平面上,点和直线互为对偶元素;在射影空间中,点和平面互为对偶元素,直线的对偶元素仍然是直线。

二、对偶的计算

在数学中,对偶的计算通常涉及到对偶空间中的元素(即对偶向量)与原向量空间中的元素(即普通向量)之间的相互作用。这种相互作用通常通过点积(内积)运算来实现,即一个对偶向量作用于一个普通向量,得到一个标量结果。

然而,需要注意的是,对偶的计算并不是一个简单的数学运算过程,而是涉及到对偶空间与原空间之间关系的理解和应用。

三、对偶的例子

  1. 数学中的对偶例子

    • 在二维空间中,一个向量(x, y)可以看作是一个从原点到点(x, y)的有向线段。此时,一个对偶向量可以看作是一个线性函数,它接收一个二维向量作为输入,并输出一个标量作为结果。例如,对偶向量(a,
      b)作用于向量(x, y)的结果就是它们的点积ax + by。
  2. 射影几何中的对偶例子

    • 在射影平面上,通过一点作一直线与在一直线上取一点是互为对偶的运算。这意味着,如果我们有一个点P和一条直线l,那么通过点P作一条直线m与在直线l上取一点Q是两种对偶的几何操作。

四、对偶的例题

假设我们有一个线性规划问题,其目标是最大化某个线性函数,并受到一系列线性约束的限制。这个线性规划问题的对偶问题是通过交换原问题中的目标和约束来构造的。具体来说,原问题的每个约束都会成为对偶问题中的一个变量,而原问题的目标函数中的系数则成为对偶问题中的约束条件。

例题

原问题: 最大化 z = 3 x + 2 y 受约束于: 最大化 z = 3x + 2y 受约束于: 最大化z=3x+2y受约束于:
x + 2 y ≤ 10 , 2 x + y ≤ 8 , x , y ≥ 0 x + 2y ≤ 10 ,2x + y ≤ 8, x, y ≥ 0 x+2y102x+y8x,y0
对偶问题:最小化 w = 10 u + 8 v 受约束于: u + 2 v ≥ 3 (对应原问题中 x 的系数) 2 u + v ≥ 2 (对应原问题中 y 的系数) u , v ≥ 0 (对应原问题中的非负约束) 对偶问题: 最小化 w = 10u + 8v 受约束于: \\u + 2v ≥ 3 (对应原问题中x的系数) \\ 2u + v ≥ 2(对应原问题中y的系数) \\ u, v ≥ 0 (对应原问题中的非负约束) 对偶问题:最小化w=10u+8v受约束于:u+2v3(对应原问题中x的系数)2u+v2(对应原问题中y的系数)u,v0(对应原问题中的非负约束)
在这个例题中,我们看到了原问题和对偶问题之间的对偶性。原问题中的变量x和y变成了对偶问题中的约束条件系数,而原问题中的约束条件则变成了对偶问题中的目标和变量。这种对偶性在优化理论中非常重要,因为它允许我们通过求解一个相对简单的问题(如对偶问题)来间接求解原问题。

以上是对对偶的定义、计算、例子和例题的详细解释。需要注意的是,不同领域的对偶概念可能有所不同,但它们都体现了某种形式的对称性和相互关联性。

五、具体理论及例子

在数学中,“对偶”是一个广泛应用于不同领域的概念,通常表示某种变换或关系的相应结构。对偶的具体定义和应用依赖于所处的数学领域,下面将分别介绍对偶的定义、计算方法、例子以及相关例题。

一、对偶的定义
1. 向量空间的对偶

在线性代数中,对偶空间(dual space)是与给定向量空间相关联的另一个向量空间。具体来说,若 V V V是一个向量空间,其对偶空间
V ∗ V^* V由从 V V V到其标量域的所有线性映射(称为线性函数或线性形式)组成。也就是说, V ∗ V^* V的每一个元素都是一个线性函数 f : V → R f: V\rightarrow \mathbb{R} f:VR(或 C \mathbb{C} C,取决于标量域)。

如果 V V V是有限维的,且维数为 n n n,那么 V ∗ V^* V的维数也为 n n n。假设 { e 1 , e 2 , … , e n } \{ e_1, e_2, \dots, e_n \} {e1,e2,,en} V V V的一组基,那么 V ∗ V^* V中有一个自然的对偶基 { e 1 , e 2 , … , e n } \{ e^1, e^2, \dots, e^n \} {e1,e2,,en},使得:
e i ( e j ) = δ j i e^i(e_j) = \delta^i_j ei(ej)=δji 其中 δ j i \delta^i_j δji是克罗内克δ符号,当 i = j i = j i=j时为1,否则为0。

2. 拓扑空间的对偶

在拓扑学中,对偶性可以通过拓扑空间与其对偶空间之间的一种特殊关系来描述。例如,在代数拓扑中,有庞加莱对偶(Poincaréduality),它表明对于一个紧致可定向的流形,其同调群与上同调群之间存在对偶关系。

3. 线性规划的对偶

在优化理论中,特别是在线性规划中,对偶性是指每一个线性规划问题(称为“原问题”)都有一个与之相关的对偶问题。原问题和对偶问题之间有紧密的关系,常常在解决原问题的过程中,通过解决对偶问题来简化计算。

二、对偶的计算
1. 向量空间的对偶

计算对偶空间中的线性函数非常直接。假设 V V V是由 { e 1 , e 2 , … , e n } \{ e_1, e_2, \dots, e_n \} {e1,e2,,en}生成的向量空间,而 V ∗ V^* V是其对偶空间,若我们要计算 V ∗ V^* V中的一个元素 f f f,通常只需要计算 f f f在基向量上的取值,然后由线性扩展到整个空间。

例如,给定 V = R 2 V = \mathbb{R}^2 V=R2 V ∗ V^* V中一个线性函数 f f f可以表示为: f ( x , y ) = a x + b y f(x, y) = ax + by f(x,y)=ax+by 其中 a , b a, b a,b是实数。

2. 线性规划的对偶

在线性规划中,对偶问题的构造涉及到原问题的约束条件和目标函数的系数。对于一个标准的线性规划问题: maximize  c T x \text{maximize } c^T x maximize cTx subject to  A x ≤ b ,   x ≥ 0 \text{subject to } Ax \leq b, \, x \geq 0 subject to Axb,x0

其对偶问题为: minimize  b T y \text{minimize } b^T y minimize bTy subject to  A T y ≥ c ,   y ≥ 0 \text{subject to } A^T y \geq c, \, y \geq 0 subject to ATyc,y0

三、例子
例子1:向量空间的对偶

考虑向量空间 V = R 2 V = \mathbb{R}^2 V=R2,其标准基为 e 1 = ( 1 , 0 ) e_1 = (1, 0) e1=(1,0) e 2 = ( 0 , 1 ) e_2 = (0, 1) e2=(0,1)。那么
V ∗ V^* V中的对偶基为 e 1 e^1 e1 e 2 e^2 e2,其中: e 1 ( x , y ) = x , e 2 ( x , y ) = y e^1(x, y) = x, \quad e^2(x, y) = y e1(x,y)=x,e2(x,y)=y
V ∗ V^* V中的任意一个元素 f f f,它可以表示为: f = a e 1 + b e 2 f = ae^1 + be^2 f=ae1+be2 对于任意向量 ( x , y ) ∈ V (x, y) \in V (x,y)V,有: f ( x , y ) = a ⋅ x + b ⋅ y f(x, y) = a \cdot x + b \cdot y f(x,y)=ax+by

例子2:线性规划的对偶

考虑以下线性规划问题(原问题): maximize  z = 2 x 1 + 3 x 2 \text{maximize } z = 2x_1 + 3x_2 maximize z=2x1+3x2 subject to  x 1 + 2 x 2 ≤ 4 ,   3 x 1 + 2 x 2 ≤ 6 ,   x 1 , x 2 ≥ 0 \text{subject to } x_1 + 2x_2 \leq 4, \, 3x_1 + 2x_2 \leq 6, \, x_1, x_2 \geq 0 subject to x1+2x24,3x1+2x26,x1,x20

构造其对偶问题: minimize  w = 4 y 1 + 6 y 2 \text{minimize } w = 4y_1 + 6y_2 minimize w=4y1+6y2 subject to  y 1 + 3 y 2 ≥ 2 ,   2 y 1 + 2 y 2 ≥ 3 ,   y 1 , y 2 ≥ 0 \text{subject to } y_1 + 3y_2 \geq 2, \, 2y_1 + 2y_2 \geq 3, \, y_1, y_2 \geq 0 subject to y1+3y22,2y1+2y23,y1,y20

四、例题
例题1:计算对偶空间中的一个线性函数

已知向量空间 V = R 3 V = \mathbb{R}^3 V=R3,求对偶空间 V ∗ V^* V中的一个线性函数 f f f,使得 f ( 1 , 0 , 0 ) = 2 f(1, 0, 0) = 2 f(1,0,0)=2 f ( 0 , 1 , 0 ) = − 1 f(0, 1, 0) = -1 f(0,1,0)=1 f ( 0 , 0 , 1 ) = 3 f(0, 0, 1) = 3 f(0,0,1)=3

解答:

首先, V ∗ V^* V中的线性函数 f f f可以表示为: f ( x , y , z ) = a x + b y + c z f(x, y, z) = ax + by + cz f(x,y,z)=ax+by+cz

根据已知条件: a = 2 ,   b = − 1 ,   c = 3 a = 2, \, b = -1, \, c = 3 a=2,b=1,c=3

因此, f ( x , y , z ) = 2 x − y + 3 z f(x, y, z) = 2x - y + 3z f(x,y,z)=2xy+3z

例题2:求线性规划的对偶问题

求以下线性规划问题的对偶问题: maximize  z = x 1 + x 2 \text{maximize } z = x_1 + x_2 maximize z=x1+x2 subject to  x 1 + 2 x 2 ≤ 1 ,   2 x 1 + x 2 ≤ 2 ,   x 1 , x 2 ≥ 0 \text{subject to } x_1 + 2x_2 \leq 1, \, 2x_1 + x_2 \leq 2, \, x_1, x_2 \geq 0 subject to x1+2x21,2x1+x22,x1,x20

解答:

原问题中:

  • 目标函数的系数向量为 c = ( 1 , 1 ) c = (1, 1) c=(1,1)
  • 约束条件矩阵 A = ( 1 2 2 1 ) A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} A=(1221)
  • 约束条件的右侧常数向量为 b = ( 1 , 2 ) b = (1, 2) b=(1,2)

对偶问题为: minimize  w = y 1 + 2 y 2 \text{minimize } w = y_1 + 2y_2 minimize w=y1+2y2 subject to  y 1 + 2 y 2 ≥ 1 ,   2 y 1 + y 2 ≥ 1 ,   y 1 , y 2 ≥ 0 \text{subject to } y_1 + 2y_2 \geq 1, \, 2y_1 + y_2 \geq 1, \, y_1, y_2 \geq 0 subject to y1+2y21,2y1+y21,y1,y20

线性规则的对偶理论推导

对于线性规则的原问题和目标问题其实已经公式化,但这些公式的理论来源是什么?
下面对此进行相关解释

线性规划中的对偶性原理揭示了原始问题(Primal Problem)和对偶问题(Dual
Problem)之间的深刻联系。通过研究对偶问题,不仅可以验证原始问题的最优解,还可以获得其他有价值的信息,如边际值、灵敏度分析等。下面详细解释对偶的原理和对偶公式的来源。

1. 对偶性原理的基本思想

对偶性原理的核心思想是:在一个优化问题中,原始问题和与之对应的对偶问题之间存在一种相互制约和互补的关系。具体来说,原始问题的最优解与对偶问题的最优解在数值上相等,且它们的约束条件通过互补松弛条件联系在一起。

基本思想

  • 目标函数的对称性:原始问题的目标是最小化,而对偶问题的目标是最大化。这种对称性使得对偶问题的最优解可以作为原始问题最优解的上界或下界。
  • 约束条件的对称性:原始问题的约束条件决定了可行解的集合,对偶问题的约束条件则来自于原始问题的结构。通过分析对偶问题的约束,可以推导出原始问题的解是否达到最优。
2. 对偶性原理的数学推导

为了理解对偶性的数学原理,我们从拉格朗日乘子法(Lagrange Multiplier Method)和线性规划的标准形式开始。

原始问题的标准形式

考虑以下线性规划的原始问题(标准形式):

Minimize  z = c T x \text{Minimize } z = c^T x Minimize z=cTx subject to  A x ≥ b , x ≥ 0 \text{subject to } Ax \geq b, \quad x \geq 0 subject to Axb,x0

其中:

  • x x x n n n 维决策变量向量。
  • c c c n n n 维目标系数向量。
  • A A A m × n m \times n m×n 的约束系数矩阵。
  • b b b m m m 维常数向量。
对偶问题的推导
  1. 引入拉格朗日乘子

    对于每一个不等式约束 A x ≥ b Ax \geq b Axb,我们引入一个拉格朗日乘子 y ≥ 0 y \geq 0 y0 来表示约束的“影子价格”。

    拉格朗日函数 L ( x , y ) L(x, y) L(x,y) 定义为:

L ( x , y ) = c T x − y T ( A x − b ) L(x, y) = c^T x - y^T (Ax - b) L(x,y)=cTxyT(Axb)

  1. 求解对偶函数

    对偶函数 g ( y ) g(y) g(y) 是通过对 x x x 变量进行极小化得到的:

g ( y ) = inf ⁡ x ≥ 0 L ( x , y ) = inf ⁡ x ≥ 0 ( c T x − y T ( A x − b ) ) g(y) = \inf_{x \geq 0} L(x, y) = \inf_{x \geq 0} \left(c^T x - y^T (Ax - b)\right) g(y)=x0infL(x,y)=x0inf(cTxyT(Axb))

展开并重新排列后:

g ( y ) = y T b + inf ⁡ x ≥ 0 ( ( c T − y T A ) x ) g(y) = y^T b + \inf_{x \geq 0} \left((c^T - y^T A)x \right) g(y)=yTb+x0inf((cTyTA)x)

如果 c T − y T A ≥ 0 c^T - y^T A \geq 0 cTyTA0 对所有 x ≥ 0 x \geq 0 x0 成立,那么最小值为零,否则 g ( y ) g(y) g(y) 将无界。因此, g ( y ) g(y) g(y) 的表达式为:

g ( y ) = y T b , subject to  A T y ≤ c , y ≥ 0 g(y) = y^T b, \quad \text{subject to } A^T y \leq c, \quad y \geq 0 g(y)=yTb,subject to ATyc,y0

  1. 构造对偶问题

    对偶问题的目标是最大化对偶函数 g ( y ) g(y) g(y)

Maximize  w = g ( y ) = y T b \text{Maximize } w =g(y) = y^T b Maximize w=g(y)=yTb subject to  A T y ≤ c , y ≥ 0 \text{subject to } A^T y \leq c, \quad y \geq 0 subject to ATyc,y0

这就是线性规划中对偶问题的标准形式。

3. 对偶性的主要结论和公式来源

通过上述推导,我们可以得出以下主要结论和相关公式:

  1. 弱对偶性

    • 对于任何原始问题的可行解 x x x 和对偶问题的可行解 y y y,都有 c T x ≥ y T b c^T x \geq y^T b cTxyTb
    • 这意味着原始问题的最优值总是大于或等于对偶问题的最优值。
  2. 强对偶性

    • 如果原始问题和对偶问题都有可行解且都有限,那么原始问题的最优值和对偶问题的最优值相等,即 z ∗ = w ∗ z^* = w^* z=w
    • 强对偶性意味着我们可以通过求解对偶问题来找到原始问题的最优值。
  3. 互补松弛条件

    • 对于原始问题的最优解 x ∗ x^* x 和对偶问题的最优解 y ∗ y^* y,必须满足互补松弛条件: y i ∗ ( A i T x ∗ − c i ) = 0 (对所有 i ) y_i^* (A_i^T x^* - c_i) = 0 \quad \text{(对所有$i$)} yi(AiTxci)=0(对所有i) x j ∗ ( b j − A j x ∗ ) = 0 (对所有 j ) x_j^* (b_j - A_j x^*) = 0 \quad \text{(对所有$j$)} xj(bjAjx)=0(对所有j)
    • 这意味着在最优解处,原始问题的每一个松弛变量和对偶问题的每一个拉格朗日乘子的乘积为零。
4. 对偶问题的几何解释

对偶性不仅有代数意义,还可以通过几何来理解。原始问题的可行解空间可以看作是一个多面体,目标函数的最小值对应于该多面体的某个顶点。对偶问题的解对应于多面体的某个面,其中目标函数的最大值在这个面上达到。

拉格朗日乘子(Lagrange Multipliers)

是一种在受约束条件下寻找函数极值的方法。这种方法特别适用于求解多元函数在给定约束条件下的极值问题。

基本概念

假设我们有一个多元函数 f ( x 1 , x 2 , … , x n ) f(x_1, x_2, \ldots, x_n) f(x1,x2,,xn),并希望找到该函数在 g ( x 1 , x 2 , … , x n ) = 0 g(x_1, x_2, \ldots, x_n) = 0 g(x1,x2,,xn)=0 这一约束条件下的极值。

拉格朗日函数

为了解决这个问题,我们构造一个拉格朗日函数(也称为拉格朗日量):

L ( x 1 , x 2 , … , x n , λ ) = f ( x 1 , x 2 , … , x n ) + λ g ( x 1 , x 2 , … , x n ) L(x_1, x_2, \ldots, x_n, \lambda) = f(x_1, x_2, \ldots, x_n) + \lambda g(x_1, x_2, \ldots, x_n) L(x1,x2,,xn,λ)=f(x1,x2,,xn)+λg(x1,x2,,xn)

其中, λ \lambda λ 被称为拉格朗日乘子,是一个待定的常数。

极值条件

为了找到极值点,我们需要对拉格朗日函数中的每一个变量(包括拉格朗日乘子)求偏导,并令其为0:

∂ L ∂ x 1 = 0 , ∂ L ∂ x 2 = 0 , … , ∂ L ∂ x n = 0 , ∂ L ∂ λ = 0 \frac{\partial L}{\partial x_1} = 0, \quad \frac{\partial L}{\partial x_2} = 0, \quad \ldots, \quad \frac{\partial L}{\partial x_n} = 0, \quad \frac{\partial L}{\partial \lambda} = 0 x1L=0,x2L=0,,xnL=0,λL=0

这给出了一个包含 n + 1 n+1 n+1 个方程的方程组(因为有一个额外的拉格朗日乘子 λ \lambda λ)。

求解步骤
  1. 构造拉格朗日函数:将原函数和约束条件结合,形成拉格朗日函数。
  2. 求偏导并置零:对拉格朗日函数中的每一个变量求偏导,并令其为0。
  3. 解方程组:解出上述方程组,得到可能的极值点。
  4. 验证极值:通过二阶导数测试或其他方法验证这些点是否为极值点,并确定是极大值还是极小值。
注意事项
  • 拉格朗日乘子法只能找到可能的极值点,还需要进一步验证这些点是否真的是极值点。
  • 如果约束条件是非线性的,或者存在多个约束条件,拉格朗日乘子法仍然适用,但方程组可能会变得更加复杂。
  • 在实际应用中,拉格朗日乘子法经常与最优化算法结合使用,以找到满足约束条件的最优解。

拉格朗日函数(Lagrange Function)

是在处理带有约束条件的优化问题时引入的一个辅助函数。它通过将原目标函数与约束条件的线性组合相结合,从而转化为一个无约束的优化问题。这种方法特别适用于求解在给定等式约束下的极值问题。

定义

假设我们有一个目标函数 f ( x 1 , x 2 , … , x n ) f(x_1, x_2, \ldots, x_n) f(x1,x2,,xn),我们希望找到该函数在 m m m 个等式约束条件
g i ( x 1 , x 2 , … , x n ) = 0 g_i(x_1, x_2, \ldots, x_n) = 0 gi(x1,x2,,xn)=0(其中 i = 1 , 2 , … , m i = 1, 2, \ldots, m i=1,2,,m)下的极值。

拉格朗日函数定义为:

L ( x 1 , x 2 , … , x n , λ 1 , λ 2 , … , λ m ) = f ( x 1 , x 2 , … , x n ) + ∑ i = 1 m λ i g i ( x 1 , x 2 , … , x n ) L(x_1, x_2, \ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_m) = f(x_1, x_2, \ldots, x_n) + \sum_{i=1}^{m} \lambda_i g_i(x_1, x_2, \ldots, x_n) L(x1,x2,,xn,λ1,λ2,,λm)=f(x1,x2,,xn)+i=1mλigi(x1,x2,,xn)

其中, λ i \lambda_i λi i = 1 , 2 , … , m i = 1, 2, \ldots, m i=1,2,,m)是拉格朗日乘子,它们是待定的系数,用于将约束条件与目标函数相结合。

极值条件

为了找到极值点,我们需要对拉格朗日函数中的每一个变量(包括 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn λ 1 , λ 2 , … , λ m \lambda_1,\lambda_2, \ldots, \lambda_m λ1,λ2,,λm)求偏导,并令其为0:

∂ L ∂ x 1 = 0 , ∂ L ∂ x 2 = 0 , … , ∂ L ∂ x n = 0 \frac{\partial L}{\partial x_1} = 0, \quad \frac{\partial L}{\partial x_2} = 0, \quad \ldots, \quad \frac{\partial L}{\partial x_n} = 0 x1L=0,x2L=0,,xnL=0
∂ L ∂ λ 1 = g 1 ( x 1 , x 2 , … , x n ) = 0 , ∂ L ∂ λ 2 = g 2 ( x 1 , x 2 , … , x n ) = 0 , … , ∂ L ∂ λ m = g m ( x 1 , x 2 , … , x n ) = 0 \frac{\partial L}{\partial \lambda_1} = g_1(x_1, x_2, \ldots, x_n) = 0, \\\quad \frac{\partial L}{\partial \lambda_2} = g_2(x_1, x_2, \ldots, x_n) = 0, \\\quad \ldots,\\ \quad \frac{\partial L}{\partial \lambda_m} = g_m(x_1, x_2, \ldots, x_n) = 0 λ1L=g1(x1,x2,,xn)=0,λ2L=g2(x1,x2,,xn)=0,,λmL=gm(x1,x2,,xn)=0

注意,对于 λ i \lambda_i λi 的偏导实际上直接给出了约束条件 g i ( x 1 , x 2 , … , x n ) = 0 g_i(x_1, x_2, \ldots, x_n) = 0 gi(x1,x2,,xn)=0,但这一步在求解过程中通常用于验证解是否满足约束条件,而不是作为独立的方程来求解。

求解步骤
  1. 构造拉格朗日函数:将目标函数与约束条件的线性组合结合,形成拉格朗日函数。
  2. 求偏导并置零:对拉格朗日函数中的每一个变量(不包括直接由 λ i \lambda_i λi 偏导给出的约束条件)求偏导,并令其为0。
  3. 解方程组:解出上述方程组(不包括直接由 λ i \lambda_i λi 偏导给出的约束条件作为方程),得到可能的极值点。
  4. 验证极值和约束条件:检查解是否满足所有约束条件,并通过二阶导数测试或其他方法验证这些点是否为极值点,并确定是极大值还是极小值。
注意事项
  • 拉格朗日乘子法只能找到可能的极值点,并且需要验证这些点是否满足所有约束条件以及是否为真正的极值点。
  • 如果存在不等式约束,则需要使用更复杂的优化方法,如内点法、序列二次规划(SQP)或罚函数法等。
  • 在实际应用中,拉格朗日乘子法经常与数值优化算法结合使用,以找到满足约束条件的最优解。

线性规划(Linear Programming, LP)的对偶理论(Duality Theory)

是一个非常重要的概念。对偶理论在优化问题中提供了原始问题(称为“原问题”)和一个相关的对偶问题之间的关系。对偶理论在理论研究和实际应用中都起着关键作用,特别是在经济学、运筹学和工程学中。

1. 原始问题(Primal Problem)

首先,考虑一个标准的线性规划问题,通常写成如下形式:

(P)  min ⁡ c T x \text{(P) } \min \mathbf{c}^T \mathbf{x} (P) mincTx

subject to:  A x ≥ b , x ≥ 0 \text{subject to: } \mathbf{A}\mathbf{x} \geq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0} subject to: Axb,x0

其中, c \mathbf{c} c 是目标函数的系数向量, A \mathbf{A} A是约束条件的系数矩阵, b \mathbf{b} b
是约束条件的常数向量, x \mathbf{x} x 是需要求解的决策变量向量。

2. 对偶问题(Dual Problem)
  • 对应的对偶问题可以通过拉格朗日对偶性构造。为了导出对偶问题,我们首先引入拉格朗日乘子(Lagrange multipliers) y \mathbf{y} y(对应于不等式约束 A x ≥ b \mathbf{A}\mathbf{x} \geq \mathbf{b} Axb),
    并构造拉格朗日函数: L ( x , y ) = c T x − y T ( A x − b ) \mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathbf{c}^T \mathbf{x} - \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) L(x,y)=cTxyT(Axb)

  • 拉格朗日函数在对偶问题中的作用是将原始问题的约束条件结合到目标函数中。
    根据对偶性的基本原理,对偶问题是原始问题的拉格朗日函数在
    x \mathbf{x} x 上的最小值对 y \mathbf{y} y 的最大值

  • 对偶问题的形式化表达为:

(D)  max ⁡ y ≥ 0 min ⁡ x ≥ 0 L ( x , y ) \text{(D) } \max_{\mathbf{y} \geq \mathbf{0}} \min_{\mathbf{x} \geq \mathbf{0}} \mathcal{L}(\mathbf{x}, \mathbf{y}) (D) maxy0minx0L(x,y)

我们首先对 x \mathbf{x} x求最小化:

min ⁡ x ≥ 0 L ( x , y ) = min ⁡ x ≥ 0 ( c T x − y T A x + y T b ) \min_{\mathbf{x} \geq \mathbf{0}} \mathcal{L}(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x} \geq \mathbf{0}} (\mathbf{c}^T \mathbf{x} - \mathbf{y}^T \mathbf{A}\mathbf{x} + \mathbf{y}^T \mathbf{b}) minx0L(x,y)=minx0(cTxyTAx+yTb)

这等价于:

min ⁡ x ≥ 0 ( ( c − A T y ) T x ) + y T b \min_{\mathbf{x} \geq \mathbf{0}} ((\mathbf{c} - \mathbf{A}^T \mathbf{y})^T \mathbf{x}) + \mathbf{y}^T \mathbf{b} minx0((cATy)Tx)+yTb

为了使拉格朗日函数 L ( x , y ) \mathcal{L}(\mathbf{x}, \mathbf{y}) L(x,y)有最小值,必须满足
( c − A T y ) T x (\mathbf{c} - \mathbf{A}^T \mathbf{y})^T \mathbf{x} (cATy)Tx对所有
x ≥ 0 \mathbf{x} \geq \mathbf{0} x0 是非负的,这意味着:

c − A T y ≥ 0 \mathbf{c} - \mathbf{A}^T \mathbf{y} \geq \mathbf{0} cATy0

因此,对偶问题的形式化表达为:

(D)  max ⁡ y ≥ 0 y T b \text{(D) } \max_{\mathbf{y} \geq \mathbf{0}} \mathbf{y}^T \mathbf{b} (D) maxy0yTb

subject to:  A T y ≤ c \text{subject to: } \mathbf{A}^T \mathbf{y} \leq \mathbf{c} subject to: ATyc

这就是与原始问题对应的对偶问题。

3. 对偶性定理(Duality Theorem)

对偶性定理指出,在一些条件下,原始问题的最优值等于对偶问题的最优值,这被称为“强对偶性”(Strong
Duality)。这些条件通常包括问题的可行性,即原始问题和对偶问题都有可行解。

4. 互补松弛条件(Complementary Slackness)

在最优解处,原始问题和对偶问题之间存在一种特殊的关系,称为互补松弛条件:

y i ( A x − b ) i = 0 , ∀ i y_i (\mathbf{A}\mathbf{x} - \mathbf{b})_i = 0, \quad \forall i yi(Axb)i=0,i

x j ( c − A T y ) j = 0 , ∀ j x_j (\mathbf{c} - \mathbf{A}^T \mathbf{y})_j = 0, \quad \forall j xj(cATy)j=0,j

这些条件表明,某个不等式约束在原始问题或对偶问题中的松弛程度与对应的乘子之间是互补的,即当某个约束不松弛(严格等式成立)时,其对应的乘子可能为正,否则为零。

总结

通过对拉格朗日函数进行分析,我们可以从原始问题推导出对应的对偶问题。对偶性在理论和实际应用中都是一个强有力的工具,用于验证解的最优性并为复杂问题的求解提供另一种视角。

线性规划的对偶理论代数推导

线性规划的对偶理论代数推导主要基于拉格朗日乘子法(Lagrange Multiplier Method)和线性代数的性质。以下是一个简化的代数推导过程:

原始问题

考虑一个标准的线性规划问题(原始问题):

minimize z = c T x subject to A x ≥ b x ≥ 0 \begin{align*} \text{minimize} \quad & z = \mathbf{c}^T \mathbf{x} \\ \text{subject to} \quad & A\mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{align*} minimizesubject toz=cTxAxbx0

其中, c ∈ R n \mathbf{c} \in \mathbb{R}^n cRn 是目标函数的系数向量, A ∈ R m × n A \in \mathbb{R}^{m \times n} ARm×n 是约束条件的系数矩阵, b ∈ R m \mathbf{b} \in \mathbb{R}^m bRm
是约束条件的右端向量, x ∈ R n \mathbf{x} \in \mathbb{R}^n xRn 是决策变量向量。

引入拉格朗日乘子

为了将约束条件纳入目标函数中,我们引入非负的拉格朗日乘子(也称为对偶变量) y ∈ R m \mathbf{y} \in \mathbb{R}^m yRm,并定义拉格朗日函数(Lagrangian):

L ( x , y ) = c T x − y T ( A x − b ) L(\mathbf{x}, \mathbf{y}) = \mathbf{c}^T \mathbf{x} - \mathbf{y}^T (A\mathbf{x} - \mathbf{b}) L(x,y)=cTxyT(Axb)

注意,这里我们假设 y ≥ 0 \mathbf{y} \geq \mathbf{0} y0 以确保拉格朗日函数是原始问题的一个下界(因为
A x − b ≤ 0 A\mathbf{x} - \mathbf{b} \leq \mathbf{0} Axb0)。

最小化拉格朗日函数

对于固定的 y \mathbf{y} y,我们想要找到 x \mathbf{x} x 使得 L ( x , y ) L(\mathbf{x}, \mathbf{y}) L(x,y)
最小。这等价于求解无约束优化问题:

min ⁡ x L ( x , y ) = min ⁡ x ( c − A T y ) T x + b T y \min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x}} (\mathbf{c} - A^T \mathbf{y})^T \mathbf{x} + \mathbf{b}^T \mathbf{y} xminL(x,y)=xmin(cATy)Tx+bTy

由于 x \mathbf{x} x 是无约束的,我们可以直接对 x \mathbf{x} x 求导并令其为零来找到最小值点。
但这里我们注意到,由于
x ≥ 0 \mathbf{x} \geq \mathbf{0} x0,实际上我们是在一个非负象限内最小化。不过,为了简化推导,我们先不考虑这个约束,并假设在最优时 c − A T y = 0 \mathbf{c}- A^T \mathbf{y} = \mathbf{0} cATy=0(这通常是一个必要条件,但不一定是充分条件,因为还需要考虑 x ≥ 0 \mathbf{x} \geq \mathbf{0} x0)。

构造对偶问题

现在,我们考虑最大化 L ( x , y ) L(\mathbf{x}, \mathbf{y}) L(x,y) 关于 y \mathbf{y} y(在 y ≥ 0 \mathbf{y} \geq \mathbf{0} y0 的约束下),因为我们已经假设了 c − A T y = 0 \mathbf{c} - A^T \mathbf{y} = \mathbf{0} cATy=0(在某种最优性条件下):

max ⁡ y ≥ 0 b T y \max_{\mathbf{y} \geq \mathbf{0}} \mathbf{b}^T \mathbf{y} y0maxbTy

但是,由于我们之前假设了 c − A T y = 0 \mathbf{c} - A^T \mathbf{y} = \mathbf{0} cATy=0,我们可以将这个条件作为对偶问题的一个约束:

A T y ≤ c A^T \mathbf{y} \leq \mathbf{c} ATyc

(注意这里的不等号方向变化是因为我们之前是在最小化 L L L 时得到的条件,而现在是在最大化 b T y \mathbf{b}^T \mathbf{y} bTy。)

因此,我们得到对偶问题:

maximize w = b T y subject to A T y ≤ c y ≥ 0 \begin{align*} \text{maximize} \quad & w = \mathbf{b}^T \mathbf{y} \\ \text{subject to} \quad & A^T \mathbf{y} \leq \mathbf{c} \\ & \mathbf{y} \geq \mathbf{0} \end{align*} maximizesubject tow=bTyATycy0

注意事项
  1. 上述推导中,我们直接假设了 c − A T y = 0 \mathbf{c} - A^T \mathbf{y} = \mathbf{0} cATy=0 来找到 x \mathbf{x} x 的最优值,但这通常是一个必要条件而非充分条件。在实际中,我们需要考虑 x ≥ 0 \mathbf{x} \geq \mathbf{0} x0 的约束,并可能使用更复杂的方法(如单纯形法或内点法)来求解原始问题

对偶推导的例子

1. 对偶的定义

在优化理论中,对偶(Duality)是指每一个优化问题(称为“原问题”或“主问题”)都可以关联一个相应的“对偶问题”。原问题的最优解与对偶问题的最优解之间存在特定的关系。通过对偶问题的解,往往可以获得关于原问题解的重要信息,甚至可以在某些情况下通过解对偶问题来间接解原问题。

2. 对偶的基本原理

基本原理:对偶性基于拉格朗日对偶性理论(Lagrangian Duality Theory)。对于一个优化问题,目标是最小化一个目标函数 f ( x ) f(\mathbf{x}) f(x),在满足一定约束条件下:

min ⁡ x f ( x ) subject to g i ( x ) ≤ 0 ,   ∀ i = 1 , 2 , … , m \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad g_i(\mathbf{x}) \leq 0, \, \forall i = 1, 2, \dots, m xminf(x)subject togi(x)0,i=1,2,,m

通过引入拉格朗日乘子 y ≥ 0 \mathbf{y} \geq 0 y0,可以构造拉格朗日函数:

L ( x , y ) = f ( x ) + ∑ i = 1 m y i g i ( x ) \mathcal{L}(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \sum_{i=1}^{m} y_i g_i(\mathbf{x}) L(x,y)=f(x)+i=1myigi(x)

对偶问题由此定义为:

max ⁡ y ≥ 0 inf ⁡ x L ( x , y ) \max_{\mathbf{y} \geq 0} \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{y}) y0maxxinfL(x,y)

这个新的优化问题称为原问题的对偶问题。对偶问题的最优值为 d ∗ d^* d,原问题的最优值为 p ∗ p^* p。根据弱对偶性原理,总是有 d ∗ ≤ p ∗ d^* \leq p^* dp

弱对偶性:对偶问题的最优值 d ∗ d^* d 总是小于或等于原问题的最优值 p ∗ p^* p

强对偶性:在某些条件下, d ∗ = p ∗ d^* = p^* d=p,即原问题和对偶问题的最优值相等。

互补松弛条件:互补松弛条件描述了在最优解处,原问题和对偶问题的约束之间的关系。它指出,对于任一约束,如果它在原问题中严格成立(松弛度为零),则对应的对偶变量必须为零;反之亦然。

3. 对偶问题的计算

步骤1:写出原问题的标准形式。

(P)  min ⁡ c T x \text{(P) } \min \mathbf{c}^T \mathbf{x} (P) mincTx

subject to:  A x ≥ b , x ≥ 0 \text{subject to: } \mathbf{A}\mathbf{x} \geq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0} subject to: Axb,x0

步骤2:构造拉格朗日函数。

L ( x , y ) = c T x − y T ( A x − b ) \mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathbf{c}^T \mathbf{x} - \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) L(x,y)=cTxyT(Axb)

步骤3:求解拉格朗日函数在 x \mathbf{x} x上的最小值。

min ⁡ x ≥ 0 L ( x , y ) = min ⁡ x ≥ 0 ( c − A T y ) T x + y T b \min_{\mathbf{x} \geq 0} \mathcal{L}(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x} \geq 0} (\mathbf{c} - \mathbf{A}^T \mathbf{y})^T \mathbf{x} + \mathbf{y}^T \mathbf{b} x0minL(x,y)=x0min(cATy)Tx+yTb

步骤4:由此导出对偶问题的形式。

(D)  max ⁡ y ≥ 0 y T b \text{(D) } \max_{\mathbf{y} \geq 0} \mathbf{y}^T \mathbf{b} (D) y0maxyTb

subject to:  A T y ≤ c \text{subject to: } \mathbf{A}^T \mathbf{y} \leq \mathbf{c} subject to: ATyc

4. 例题

例题:考虑以下线性规划问题(原问题):

(P)  min ⁡ x 1 + 2 x 2 \text{(P) } \min x_1 + 2x_2 (P) minx1+2x2

subject to:  x 1 + x 2 ≥ 1 , x 1 + 3 x 2 ≥ 2 , x 1 , x 2 ≥ 0. \text{subject to: } \begin{aligned} x_1 + x_2 & \geq 1, \\ x_1 + 3x_2 & \geq 2, \\ x_1, x_2 & \geq 0. \end{aligned} subject to: x1+x2x1+3x2x1,x21,2,0.

步骤1:写出拉格朗日函数。 L ( x 1 , x 2 , y 1 , y 2 ) = x 1 + 2 x 2 − y 1 ( x 1 + x 2 − 1 ) − y 2 ( x 1 + 3 x 2 − 2 ) \mathcal{L}(x_1, x_2, y_1, y_2) = x_1 + 2x_2 - y_1(x_1 + x_2 - 1) - y_2(x_1 + 3x_2 - 2) L(x1,x2,y1,y2)=x1+2x2y1(x1+x21)y2(x1+3x22)

步骤2:对 x 1 x_1 x1 x 2 x_2 x2求导,并令导数为零,求解最优条件。

∂ L ∂ x 1 = 1 − y 1 − y 2 = 0 ⇒ y 1 + y 2 = 1 \frac{\partial \mathcal{L}}{\partial x_1} = 1 - y_1 - y_2 = 0 \quad \Rightarrow \quad y_1 + y_2 = 1 x1L=1y1y2=0y1+y2=1

∂ L ∂ x 2 = 2 − y 1 − 3 y 2 = 0 ⇒ y 1 + 3 y 2 = 2 \frac{\partial \mathcal{L}}{\partial x_2} = 2 - y_1 - 3y_2 = 0 \quad \Rightarrow \quad y_1 + 3y_2 = 2 x2L=2y13y2=0y1+3y2=2

步骤3:解对偶问题。

联立方程得到 y 1 = 1 2 y_1 = \frac 1 2 y1=21 y 2 = 1 2 y_2 = \frac 1 2 y2=21。对偶问题的目标函数为:

max ⁡ y 1 , y 2 y 1 + 2 y 2 \max_{y_1, y_2} y_1 + 2y_2 y1,y2maxy1+2y2

步骤4:检验解。

代入 y 1 = 1 2 y_1 = \frac 1 2 y1=21 y 2 = 1 2 y_2 = \frac 1 2 y2=21 验证约束条件: y 1 + y 2 = 1 y_1 + y_2 = 1 y1+y2=1 y 1 + 3 y 2 = 2 y_1 + 3y_2 = 2 y1+3y2=2。显然约束条件得到满足,因此解 y 1 = 1 2 y_1 = \frac 1 2 y1=21 y 2 = 1 2 y_2 = \frac 1 2 y2=21 为最优解,对偶问题的最优值为 1 2 \frac 1 2 21

原问题和对偶问题的最优值相等,因此原问题的最优值也是 1 2 \frac 1 2 21

总结:对偶理论通过对原问题和对偶问题之间的关系的分析,为优化问题的求解提供了一个有力工具。这一过程展示了从原问题到对偶问题的推导方法及其在实际问题中的应用。

线性规划的对偶

是运筹学中的一个重要概念,它研究的是线性规划问题中原始问题与对偶问题之间的关系。以下是对线性规划对偶的定义、性质、例子和例题的详细解释。

一、定义

线性规划问题通常可以表示为在给定线性等式或不等式约束条件下,求解线性目标函数的最大值或最小值问题。对于任意一个线性规划问题(称为原问题,记为P),我们都可以构造一个与之对应的线性规划问题(称为对偶问题,记为D)。对偶问题的目标函数是原问题约束条件的线性组合,其约束条件则是原问题目标函数的系数经过转置和符号变化后得到的。

二、性质
  1. 对称性:原问题和对偶问题的角色可以互换,即如果对偶问题的对偶问题是原问题的一个等价表述。
  2. 弱对偶性:如果X是原问题的可行解,Y是对偶问题的可行解,则原问题的目标函数值不会大于对偶问题的目标函数值(对于最大化问题)或不会小于对偶问题的目标函数值(对于最小化问题)。
  3. 强对偶性:如果原问题有最优解,则对偶问题也一定有最优解,且两者的最优解目标函数值相等。
  4. 互补松弛性:在最优解处,原问题的某个不等式约束如果是非紧的(即不等式未取到等号),则其对偶变量必为零;反之亦然。
三、例子

假设有一个家具厂,生产桌子和椅子两种产品。桌子的单价是50元,生产一张桌子需要4个木工工时和2个油漆工工时;椅子的单价是30元,生产一把椅子需要3个木工工时和1个油漆工工时。家具厂总共有120个木工工时和50个油漆工工时。家具厂希望最大化其生产收益。

原问题(P)
目标函数: m a x Z = 50 ∗ x 1 + 30 ∗ x 2 ( x 1 为桌子数量, x 2 为椅子数量 ) 约束条件: 4 ∗ x 1 + 3 ∗ x 2 ≤ 120 (木工工时限制) 2 ∗ x 1 + x 2 ≤ 50 (油漆工工时限制) x 1 , x 2 ≥ 0 (非负约束) \\ 目标函数:max \quad Z = 50*x_1 + 30*x_2 \\(x_1为桌子数量,x_2为椅子数量) \\ 约束条件: \\ 4*x_1 + 3*x_2 ≤ 120(木工工时限制) \\ 2*x_1 + x_2 ≤ 50(油漆工工时限制) \\x_1, x_2 ≥ 0(非负约束) 目标函数:maxZ=50x1+30x2x1为桌子数量,x2为椅子数量)约束条件:4x1+3x2120(木工工时限制)2x1+x250(油漆工工时限制)x1,x20(非负约束)
对偶问题(D)
目标函数: m i n w = 120 ∗ y 1 + 50 ∗ y 2 ( y 1 为木工工时单价, y 2 为油漆工工时单价) 约束条件: 4 ∗ y 1 + 2 ∗ y 2 ≥ 50 (桌子生产收益约束) 3 ∗ y 1 + y 2 ≥ 30 (椅子生产收益约束) y 1 , y 2 ≥ 0 (非负约束) \\目标函数:min\quad w = 120*y_1 + 50*y_2 \\(y_1为木工工时单价,y_2为油漆工工时单价) \\ 约束条件: \\4*y_1 + 2*y_2 ≥ 50(桌子生产收益约束) \\3*y_1 + y_2 ≥ 30(椅子生产收益约束) \\y_1, y_2 ≥ 0(非负约束) 目标函数:minw=120y1+50y2y1为木工工时单价,y2为油漆工工时单价)约束条件:4y1+2y250(桌子生产收益约束)3y1+y230(椅子生产收益约束)y1,y20(非负约束)
在这个例子中,对偶问题实际上是在求解如何给木工和油漆工工时定价,使得出租这些工时的收益不低于自己生产家具的收益。

四、例题

例题:考虑以下线性规划问题:

  • 原问题(P):

    目标函数: m a x Z = 3 x 1 + 2 x 2 约束条件: x 1 + 2 x 2 ≤ 4 x 1 + x 2 ≥ 2 x 1 , x 2 ≥ 0 \\目标函数:max Z = 3x1 + 2x2 \\约束条件: \\ x1 + 2x2 ≤ 4 \\ x1 + x2 ≥ 2 \\x1, x2 ≥ 0 目标函数:maxZ=3x1+2x2约束条件:x1+2x24x1+x22x1,x20

  • 对偶问题(D):

    目标函数: m i n W = 4 y 1 − 2 y 2  约束条件: y 1 − y 2 ≤ 3 2 y 1 + y 2 ≥ 2 y 1 , y 2 无约束 目标函数:min W = 4y1 - 2y2 \ 约束条件: \\ y1 - y2 ≤ 3 \\2y1 + y2 ≥ 2 \\ y1, y2 无约束 目标函数:minW=4y12y2 约束条件:y1y232y1+y22y1,y2无约束
    (注意:在实际问题中,对偶变量通常也要求非负,但此处为了展示对偶问题的构造过程,暂时不添加非负约束)

注意:在构造对偶问题时,需要特别注意原问题约束条件中的不等号方向和对偶变量约束的对应关系。此外,对于无约束的对偶变量,在实际应用中通常也会根据问题的具体背景添加适当的约束条件(如非负约束)。

以上就是对线性规划对偶的定义、性质、例子和例题的详细解释。

线性规划的对偶性

是线性规划理论中的一个核心概念。对偶性不仅帮助理解原问题(称为“原始问题”)的性质,还提供了一种有效的方法来解决和验证线性规划问题。下面将详细解释对偶的定义、性质、例子和例题。

1. 对偶的定义

在线性规划中,每一个原始问题(Primal Problem)都对应一个对偶问题(Dual
Problem)。原始问题和对偶问题的关系紧密,解决对偶问题可以为原始问题的解提供重要信息。

原始问题的标准形式 Minimize  z = c T x \text{Minimize } z = c^T x Minimize z=cTx subject to  A x ≥ b , x ≥ 0 \text{subject to } Ax \geq b, \quad x \geq 0 subject to Axb,x0 其中, x x x是决策变量向量, c c c是目标系数向量, A A A 是约束系数矩阵, b b b
是约束的常数向量。

对偶问题的标准形式 Maximize  w = b T y \text{Maximize } w = b^T y Maximize w=bTy subject to  A T y ≤ c , y ≥ 0 \text{subject to } A^T y \leq c, \quad y \geq 0 subject to ATyc,y0 其中, y y y 是对偶变量向量, b b b是原始问题中约束的常数向量, A T A^T AT
是原始问题中系数矩阵的转置。

2. 对偶问题的性质

线性规划的对偶性具有以下几个重要性质:

  1. 对偶性定理

    • 弱对偶性:若 x x x是原始问题的可行解, y y y是对偶问题的可行解,则 c T x ≥ b T y c^T x \geq b^T y cTxbTy
    • 强对偶性:若原始问题有最优解 x ∗ x^* x,对偶问题也有最优解 y ∗ y^* y,且 c T x ∗ = b T y ∗ c^T x^* = b^T y^* cTx=bTy。换句话说,原始问题和对偶问题的最优值是相等的。
  2. 可行性

    • 若原始问题有一个有限的最优解,则对偶问题也有一个有限的最优解。
    • 如果原始问题无界,则对偶问题无可行解。
    • 如果对偶问题无界,则原始问题无可行解。
  3. 互补松弛条件: 对于原始问题和对偶问题的最优解 x ∗ x^* x y ∗ y^* y,它们必须满足以下互补松弛条件: y i ∗ ( A i T x ∗ − c i ) = 0 (对所有  i ) y_i^* (A_i^T x^* - c_i) = 0 \quad \text{(对所有 \( i \))} yi(AiTxci)=0(对所有 i) x j ∗ ( b j − A j x ∗ ) = 0 (对所有  j ) x_j^* (b_j - A_j x^*) = 0 \quad \text{(对所有 \( j \))} xj(bjAjx)=0(对所有 j)

3. 对偶问题的例子

例子:考虑一个简单的线性规划问题

原始问题 Minimize  z = 2 x 1 + 3 x 2 \text{Minimize } z = 2x_1 + 3x_2 Minimize z=2x1+3x2 subject to  { x 1 + x 2 ≥ 1 2 x 1 + x 2 ≥ 2 x 1 , x 2 ≥ 0 \text{subject to } \begin{cases} x_1 + x_2 \geq 1 \\ 2x_1 + x_2 \geq 2 \\ x_1, x_2 \geq 0 \end{cases} subject to  x1+x212x1+x22x1,x20

对偶问题: 根据对偶的定义,对应的对偶问题为:

Maximize  w = y 1 + 2 y 2 \text{Maximize } w = y_1 + 2y_2 Maximize w=y1+2y2 subject to  { y 1 + 2 y 2 ≤ 2 y 1 + y 2 ≤ 3 y 1 , y 2 ≥ 0 \text{subject to } \begin{cases} y_1 + 2y_2 \leq 2 \\ y_1 + y_2 \leq 3 \\ y_1, y_2 \geq 0 \end{cases} subject to  y1+2y22y1+y23y1,y20

4. 对偶问题的例题

例题

原始问题:

Minimize  z = 3 x 1 + 4 x 2 \text{Minimize } z = 3x_1 + 4x_2 Minimize z=3x1+4x2 subject to  { x 1 + 2 x 2 ≥ 8 2 x 1 + x 2 ≥ 6 x 1 , x 2 ≥ 0 \text{subject to } \begin{cases} x_1 + 2x_2 \geq 8 \\ 2x_1 + x_2 \geq 6 \\ x_1, x_2 \geq 0 \end{cases} subject to  x1+2x282x1+x26x1,x20

求解

  1. 写出对偶问题

对偶问题为:

Maximize  w = 8 y 1 + 6 y 2 \text{Maximize } w = 8y_1 + 6y_2 Maximize w=8y1+6y2 subject to  { y 1 + 2 y 2 ≤ 3 2 y 1 + y 2 ≤ 4 y 1 , y 2 ≥ 0 \text{subject to } \begin{cases} y_1 + 2y_2 \leq 3 \\ 2y_1 + y_2 \leq 4 \\ y_1, y_2 \geq 0 \end{cases} subject to  y1+2y232y1+y24y1,y20

  1. 求解对偶问题

利用图解法或单纯形法求解对偶问题,假设对偶问题的最优解为 y 1 ∗ = 1 y_1^* = 1 y1=1, y 2 ∗ = 2 y_2^* = 2 y2=2

  1. 验证原始问题最优解

根据强对偶性,原始问题和对偶问题的最优解相等,因此原始问题的最优解 z ∗ = w ∗ = 8 ( 1 ) + 6 ( 2 ) = 20 z^* = w^* = 8(1) + 6(2) = 20 z=w=8(1)+6(2)=20

总结来说,线性规划的对偶性是一个重要的工具,它帮助我们理解和求解复杂的优化问题。通过对偶问题,可以验证原始问题的解是否最优,或者在原始问题无解时寻找原因。

对偶详解

在数学中,“对偶”这一概念有多种应用,它可以在不同的数学分支中以不同的方式出现。下面,我将从几个常见的角度详细解释对偶的定义、计算、例子和例题。

1. 对偶性的基本概念

在数学中,对偶性通常指的是一种结构或系统与其对应的另一种结构或系统之间的某种对称性。这种对称性可能体现在多种数学对象上,如集合、图论、代数、几何、优化问题等。

2. 代数中的对偶

在代数中,对偶性经常与向量空间、线性变换、群论等概念相关。例如,在线性代数中,一个向量空间V的对偶空间V*是由V上所有线性函数组成的向量空间。这里的“对偶”体现在了从原空间到函数空间的转换上。

例子

设V是实数域R上的二维向量空间,其元素可以表示为(x, y)的二元组。V中的元素则是V到R的线性映射,即二元线性函数f(x, y) =
ax + by,其中a和b是实数。这样,V中的每个向量都与V
中的一个线性函数相对应。

3. 几何中的对偶

在几何学中,对偶性通常与点和线、平面和空间的关系相关。例如,在射影几何中,点和直线可以视为对偶元素,一个命题关于点的如果成立,那么其对偶命题(即将所有点替换为直线,所有直线替换为点)也成立。

例子

在欧几里得平面上,考虑一个命题:“三条直线交于一点当且仅当它们有公共的交点。”其对偶命题是:“三个点共线当且仅当它们在同一直线上。”这两个命题在射影几何中都是成立的。

4. 优化问题中的对偶

在优化理论中,对偶性是一种强大的工具,用于将原问题转化为一个与之相关的但可能更容易求解的对偶问题。线性规划中的对偶定理是一个著名的例子。

例题

考虑以下线性规划问题(原问题):

最大化 z = 3 x + 4 y z = 3x + 4y z=3x+4y

约束条件为:

{ x + 2 y ≤ 12 3 x + y ≥ 6 x , y ≥ 0 \begin{cases} x + 2y \leq 12 \\ 3x + y \geq 6 \\ x, y \geq 0 \end{cases} x+2y123x+y6x,y0

其对偶问题可以表示为:

最小化 w = 12 u + 6 v w = 12u + 6v w=12u+6v

约束条件为:

{ u + 3 v ≥ 3 2 u + v ≥ 4 u , v ≥ 0 \begin{cases} u + 3v \geq 3 \\ 2u + v \geq 4 \\ u, v \geq 0 \end{cases} u+3v32u+v4u,v0

这里,u和v是对偶变量,与原问题中的x和y相对应。

5. 偶函数与奇函数

虽然这不是传统意义上的“对偶”,但偶函数和奇函数是数学中另一种重要的对称性体现。偶函数满足 f ( x ) = f ( − x ) f(x) = f(-x) f(x)=f(x),奇函数满足 f ( x ) = − f ( − x ) f(x) = -f(-x) f(x)=f(x)

例子
  • 偶函数: f ( x ) = x 2 f(x) = x^2 f(x)=x2
  • 奇函数: f ( x ) = x 3 f(x) = x^3 f(x)=x3

结论

数学中的对偶性是一个广泛而深刻的概念,它体现在多个数学分支中,并以不同的方式展现。从代数、几何到优化理论,对偶性都是数学研究和应用中的重要工具。希望以上解释和例子能帮助你更好地理解这一概念。

参考文献

1.文心一言
2. chatgpt
3.《凸分析》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值