AlphaEdit 基于无损编辑的新范式

在这里插入图片描述

零空间的定义

零空间(Null Space)是线性代数中的一个重要概念,指一个矩阵 A A A 的所有解向量 x \mathbf{x} x 满足齐次线性方程组 A x = 0 A\mathbf{x} = \mathbf{0} Ax=0 的集合。零空间是向量空间的一个子空间,通常记为 Null ( A ) \text{Null}(A) Null(A) Ker ( A ) \text{Ker}(A) Ker(A)

零空间的性质

  1. 子空间特性:零空间满足向量空间的加法和数乘封闭性。若 x 1 , x 2 ∈ Null ( A ) \mathbf{x}_1, \mathbf{x}_2 \in \text{Null}(A) x1,x2Null(A),则 x 1 + x 2 \mathbf{x}_1 + \mathbf{x}_2 x1+x2 c x 1 c\mathbf{x}_1 cx1 c c c 为标量)也属于 Null ( A ) \text{Null}(A) Null(A)
  2. 维数与秩的关系:矩阵 A A A 的零空间维数称为 A A A零化度(nullity),满足秩-零化度定理:
    rank ( A ) + nullity ( A ) = n \text{rank}(A) + \text{nullity}(A) = n rank(A)+nullity(A)=n
    其中 n n n 为矩阵 A A A 的列数。

计算方法

  1. 求解齐次方程:通过高斯消元法将矩阵 ( A ) 化为行最简形(RREF),自由变量对应的向量即为零空间的基。
  2. 示例:对于矩阵
    A = ( 1 2 3 6 ) , A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}, A=(1326),
    A x = 0 A\mathbf{x} = \mathbf{0} Ax=0 x 1 = − 2 x 2 x_1 = -2x_2 x1=2x2,零空间基为 ( − 2 1 ) \begin{pmatrix} -2 \\ 1 \end{pmatrix} (21)

应用场景

  1. 线性方程组解的结构:非齐次方程的通解可表示为特解与零空间向量的线性组合。
  2. 矩阵分析:零空间反映了矩阵的线性相关性,用于判断矩阵是否可逆(可逆矩阵的零空间仅为 ( {\mathbf{0}} ))。
  3. 工程与科学:在控制理论、信号处理中,零空间用于描述系统约束或冗余自由度。

与其他概念的关系

  • 列空间:矩阵列向量的线性生成空间,与零空间正交(在实数域内)。
  • 左零空间:转置矩阵 ( A^T ) 的零空间,对应 ( A ) 的行向量关系。

通过理解零空间,可以深入掌握矩阵的线性变换本质及其在实际问题中的作用。

  • 示例
    在这里插入图片描述

AlphaEdit 的核心实现步骤

计算保留知识的零空间投影矩阵
基于保留知识的键矩阵 K 0 K_0 K0,计算协方差矩阵 K 0 K 0 T K_0 K_0^T K0K0T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值