
零空间的定义
零空间(Null Space)是线性代数中的一个重要概念,指一个矩阵 A A A 的所有解向量 x \mathbf{x} x 满足齐次线性方程组 A x = 0 A\mathbf{x} = \mathbf{0} Ax=0 的集合。零空间是向量空间的一个子空间,通常记为 Null ( A ) \text{Null}(A) Null(A) 或 Ker ( A ) \text{Ker}(A) Ker(A)。
零空间的性质
- 子空间特性:零空间满足向量空间的加法和数乘封闭性。若 x 1 , x 2 ∈ Null ( A ) \mathbf{x}_1, \mathbf{x}_2 \in \text{Null}(A) x1,x2∈Null(A),则 x 1 + x 2 \mathbf{x}_1 + \mathbf{x}_2 x1+x2 和 c x 1 c\mathbf{x}_1 cx1( c c c 为标量)也属于 Null ( A ) \text{Null}(A) Null(A)。
- 维数与秩的关系:矩阵 A A A 的零空间维数称为 A A A 的零化度(nullity),满足秩-零化度定理:
rank ( A ) + nullity ( A ) = n \text{rank}(A) + \text{nullity}(A) = n rank(A)+nullity(A)=n
其中 n n n 为矩阵 A A A 的列数。
计算方法
- 求解齐次方程:通过高斯消元法将矩阵 ( A ) 化为行最简形(RREF),自由变量对应的向量即为零空间的基。
- 示例:对于矩阵
A = ( 1 2 3 6 ) , A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}, A=(1326),
解 A x = 0 A\mathbf{x} = \mathbf{0} Ax=0 得 x 1 = − 2 x 2 x_1 = -2x_2 x1=−2x2,零空间基为 ( − 2 1 ) \begin{pmatrix} -2 \\ 1 \end{pmatrix} (−21)。
应用场景
- 线性方程组解的结构:非齐次方程的通解可表示为特解与零空间向量的线性组合。
- 矩阵分析:零空间反映了矩阵的线性相关性,用于判断矩阵是否可逆(可逆矩阵的零空间仅为 ( {\mathbf{0}} ))。
- 工程与科学:在控制理论、信号处理中,零空间用于描述系统约束或冗余自由度。
与其他概念的关系
- 列空间:矩阵列向量的线性生成空间,与零空间正交(在实数域内)。
- 左零空间:转置矩阵 ( A^T ) 的零空间,对应 ( A ) 的行向量关系。
通过理解零空间,可以深入掌握矩阵的线性变换本质及其在实际问题中的作用。
- 示例

AlphaEdit 的核心实现步骤
计算保留知识的零空间投影矩阵
基于保留知识的键矩阵 K 0 K_0 K0,计算协方差矩阵 K 0 K 0 T K_0 K_0^T K0K0T

最低0.47元/天 解锁文章
1098

被折叠的 条评论
为什么被折叠?



