机器学习初级篇14——理解SVM损失函数
SVM的损失函数是什么?怎么理解?
1、SVM损失函数图示
在学习支持向量机的过程中,我们知道其损失函数为合页损失函数。至于为什么叫这个名字,李航老师的《统计学习方法》上是这么说的:由于函数形状像一个合页,故命合页损失函数。下图为合页损失函数的图像(取自《统计学习方法》):
横轴表示函数间隔,我们从两个方面来理解函数间隔:
1)正负
当样本被正确分类时,y(wx+b)>0;当样本被错误分类时,y(wx+b)<0。
2)大小
y(wx+b)的绝对值代表样本距离决策边界的远近程度。y(wx+b)的绝对值越大,表示样本距离决策边界越远。
因此,我们可以知道:
当y(wx+b)>0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越好。
当y(wx+b)<0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越差。
从图中我们可以看到,
1)0-1损失
当样本被正确分类时,损失为0;当样本被错误分类时,损失为1。
2)感知机损失函数
当样本被正确分类时,损失为0;当样本被错误分类时,损失为-y(wx+b)。