机器学习初级篇14——理解SVM损失函数

本文介绍了SVM的合页损失函数,通过图示和解析解释了该损失函数为何被称为“合页”损失,强调了其在正确分类及确信度上的要求。SVM损失函数包括正则化项,旨在确保模型不仅正确分类,而且分类的确定性要高。
摘要由CSDN通过智能技术生成

机器学习初级篇14——理解SVM损失函数


SVM的损失函数是什么?怎么理解?

1、SVM损失函数图示

在学习支持向量机的过程中,我们知道其损失函数为合页损失函数。至于为什么叫这个名字,李航老师的《统计学习方法》上是这么说的:由于函数形状像一个合页,故命合页损失函数。下图为合页损失函数的图像(取自《统计学习方法》):
在这里插入图片描述

横轴表示函数间隔,我们从两个方面来理解函数间隔:

1)正负

当样本被正确分类时,y(wx+b)>0;当样本被错误分类时,y(wx+b)<0。

2)大小

y(wx+b)的绝对值代表样本距离决策边界的远近程度。y(wx+b)的绝对值越大,表示样本距离决策边界越远。

因此,我们可以知道:

当y(wx+b)>0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越好。

当y(wx+b)<0时,y(wx+b)的绝对值越大表示决策边界对样本的区分度越差。

从图中我们可以看到,

1)0-1损失

当样本被正确分类时,损失为0;当样本被错误分类时,损失为1。

2)感知机损失函数

当样本被正确分类时,损失为0;当样本被错误分类时,损失为-y(wx+b)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值