合页损失函数

这里介绍得是统计学习方法中提到的二分类合页损失函数hinge loss
在这里插入图片描述

对于包含 N N N个样本的数据 D ( x , y ) D(x,y) D(x,y) x x x代表样本输入, y y y代表真实的标签, y y y中元素的值属于 { 1 , − 1 } \{1,-1\} {1,1},分别表示正类与负类。 第 n n n个样本对应的 l o s s loss loss,如下:

l n = m a x ( 0 , 1 − y ( w x n + b ) ) l_{n}=max(0,1-y(wx_{n}+b)) ln=max(0,1y(wxn+b))

  • 1 − y ( w x n + b ) < 0 1-y(wx_{n}+b)<0 1y(wxn+b)<0, 即 y ( w x n + b ) > 1 y(wx_{n}+b)>1 y(wxn+b)>1时,loss取值为0,此时分类正确,并且输出与标签的乘积较大确信度比较高,属于易分类样本,loss忽略不计。
  • 0 < y ( w x n + b ) < 1 0<y(wx_{n}+b)<1 0<y(wxn+b)<1, loss取值为 1 − y ( w x n + b ) 1-y(wx_{n}+b) 1y(wxn+b),此时虽然分类正确,但确信度不高
  • y ( w x n + b ) < 0 y(wx_{n}+b)<0 y(wxn+b)<0, loss取值为 1 − y ( w x n + b ) 1-y(wx_{n}+b) 1y(wxn+b),此时分类错误

hinge loss 使得模型更加关注难分类的样本,并且对于分类正确但确信度不高的样本也会计算误差值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺旺棒棒冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值