这里介绍得是统计学习方法中提到的二分类合页损失函数hinge loss
对于包含 N N N个样本的数据 D ( x , y ) D(x,y) D(x,y)。 x x x代表样本输入, y y y代表真实的标签, y y y中元素的值属于 { 1 , − 1 } \{1,-1\} {1,−1},分别表示正类与负类。 第 n n n个样本对应的 l o s s loss loss,如下:
l n = m a x ( 0 , 1 − y ( w x n + b ) ) l_{n}=max(0,1-y(wx_{n}+b)) ln=max(0,1−y(wxn+b))
- 当 1 − y ( w x n + b ) < 0 1-y(wx_{n}+b)<0 1−y(wxn+b)<0, 即 y ( w x n + b ) > 1 y(wx_{n}+b)>1 y(wxn+b)>1时,loss取值为0,此时分类正确,并且输出与标签的乘积较大确信度比较高,属于易分类样本,loss忽略不计。
- 当 0 < y ( w x n + b ) < 1 0<y(wx_{n}+b)<1 0<y(wxn+b)<1, loss取值为 1 − y ( w x n + b ) 1-y(wx_{n}+b) 1−y(wxn+b),此时虽然分类正确,但确信度不高
- 当 y ( w x n + b ) < 0 y(wx_{n}+b)<0 y(wxn+b)<0, loss取值为 1 − y ( w x n + b ) 1-y(wx_{n}+b) 1−y(wxn+b),此时分类错误
hinge loss
使得模型更加关注难分类的样本,并且对于分类正确但确信度不高的样本也会计算误差值。