线性和非线性方程数值解法_数值分析计算方法

本文详细介绍了线性与非线性方程的数值解法,包括非线性方程的二分法、迭代法(如不动点迭代、牛顿迭代法、弦截法)以及线性方程组的直接法(如Gauss消去法、矩阵三角分解)。内容涵盖各种方法的条件、步骤、收敛性分析以及误差估计,旨在深入理解数值解法的原理与应用。
摘要由CSDN通过智能技术生成

传送门:
👉线性和非线性方程数值解法_数值分析计算方法
插值与逼近_数值分析计算方法

0 绪论

1 非线性方程数值解法

在这里插入图片描述

1.1 二分法
使用的条件
  1. 区间首尾异号
  2. 区间内连续
  3. 仅有一个根
步骤

先判断是否满足使用的条件,再使用
误差限的计算

1.2 迭代法
单点迭代法

f ( x ) = 0 f(x)=0 f(x)=0 改写成 x = ϕ ( x ) x=\phi(x) x=ϕ(x)
建立迭代公式 x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)
在根附近任取一点 x 0 x_0 x0,若得到的序列收敛于 α \alpha α ϕ ( x ) \phi(x) ϕ(x)连续

多点迭代法

x k + 1 = ϕ ( x k − n + 1 , . . . , x k − 2 , x k − 1 , x k ) x_{k+1}=\phi(x_{k-n+1}, ..., x_{k-2}, x_{k-1}, x_k) xk+1=ϕ(xkn+1,...,xk2,xk1,xk)

迭代法的收敛性

全局收敛性:设 α \alpha α f ( x ) = 0 f(x)=0 f(x)=0的根,如果 ∀ x 0 ∈ [ a , b ] \forall x_0 \in [a, b] x0[a,b] ,由迭代法产生的序列都收敛于根 α \alpha α, 则称该迭代法是全局收敛的;
局部收敛性:设方程 x = ϕ ( x ) x=\phi(x) x=ϕ(x)有根 α α α, 如果存在 α α α的某个邻域 Δ : ∣ x − α ∣ < δ \Delta: |x-\alpha| < \delta Δ:xα<δ,对任意初值 x 0 ∈ Δ x_0 \in \Delta x0Δ,迭代过程所产生的序列均收敛于根 α α α,则称该迭代法是局部收敛的。

迭代过程的收敛速度

D e f . Def. Def. e k = α − x k e_k=\alpha-x_k ek=αxk,若 lim ⁡ k → ∞ ∣ e k + 1 ∣ ∣ e k ∣ p = C ≠ 0 \displaystyle \lim_{k \to \infty}\frac{|e_{k+1}|}{|e_k|^p}=C\neq0 klimekpek+1=C=0,则称迭代过程是p阶收敛的;
特别地,当p=1时,称为线性收敛;
当p>1时,称为超线性收敛,
当p=2时,称为平方收敛.

迭代过程的效率指数

D e f . Def. Def. E I = p 1 θ EI=p^{1 \over \theta} EI=pθ1
为效率指数. 其中 p p p表示迭代的收敛阶, θ \theta θ表示每步迭代的计算量.
E I EI EI越大,计算效率越高.

1.2.1 不动点迭代法

T h 1.1 Th1.1 Th1.1 ϕ ( x ) \phi(x) ϕ(x)满足:
1)当 x ∈ [ a , b ] x\in[a, b] x[a,b]时, ϕ ( x ) ∈ [ a , b ] \phi(x)\in[a, b] ϕ(x)[a,b]
2) ∀ x 1 , x 2 ∈ [ a , b ] \forall x_1, x_2 \in [a, b] x1,x2[a,b],有 ∣ ϕ ( x 1 ) − ϕ ( x 2 ) ∣ ≤ L ∣ x 1 − x 2 ∣ , L < 1 |\phi(x_1)-\phi(x_2)| \leq L|x_1-x_2|,L<1 ϕ(x1)ϕ(x2)Lx1x2,L<1
则对任意初值 x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b],迭代过程 x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)收敛于 x = ϕ ( x ) x=\phi(x) x=ϕ(x) [ a , b ] [a, b] [a,b]上的唯一根 ,且有误差估计式: ∣ α − x k ∣ ≤ L 1 − L ∣ x k − x k − 1 ∣ |\alpha-x_k|\leq \frac L {1-L}|x_k-x_{k-1}| αxk1LLxkxk1 ∣ α − x k ∣ ≤ L k 1 − L ∣ x 1 − x 0 ∣ |\alpha-x_k|\leq \frac {L^k} {1-L}|x_1-x_0| αxk1LLkx1x0

T h 1.2 Th1.2 Th1.2 ϕ ( x ) \phi(x) ϕ(x) [ a , b ] [a,b] [a,b]上具有一阶导数,且
1)当 x ∈ [ a , b ] x\in [a,b] x[a,b]时,有 ϕ ( x ) ∈ [ a , b ] \phi(x)\in[a,b] ϕ(x)[a,b]
2) ∀ x ∈ [ a , b ] \forall x \in [a,b] x[a,b],有 ∣ ϕ ′ ( x ) ∣ ≤ L < 1 |\phi'(x)| \leq L < 1 ϕ(x)L<1
则对任意初值 x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b],迭代过程 x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)收敛于 x = ϕ ( x ) x=\phi(x) x=ϕ(x) [ a , b ] [a, b] [a,b]上的唯一根。

T h 1.3 Th1.3 Th1.3 ϕ ( x ) \phi(x) ϕ(x)在方程 x = ϕ ( x ) x=\phi(x) x=ϕ(x)的根 α \alpha α的邻域内有一阶连续的导数,且

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值