本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着信息技术的飞速发展和互联网信息的爆炸式增长,新闻资讯已成为人们日常生活中不可或缺的一部分。然而,面对海量的新闻信息,用户往往难以快速准确地找到符合自己兴趣和需求的新闻内容。传统的新闻浏览方式已无法满足用户个性化、精准化的信息获取需求。因此,开发一个智能新闻推荐系统,通过算法对用户的行为和偏好进行分析,实现新闻内容的个性化推荐,已成为当前新闻信息传播领域的重要研究方向。
研究意义
智能新闻推荐系统的研究不仅有助于提升用户体验,还能有效促进新闻信息的传播效率和准确性。该系统能够根据用户的兴趣和行为习惯,智能筛选并推荐用户可能感兴趣的新闻内容,从而节省用户浏览和筛选新闻的时间成本。同时,通过精准推荐,新闻内容能够更广泛地触达目标受众,提高新闻的传播效果和影响力。此外,智能新闻推荐系统的研究还能推动新闻信息传播技术的创新和发展,为新闻行业带来新的增长点。
研究目的
本研究旨在设计并实现一个智能新闻推荐系统,该系统能够基于用户画像、新闻分类和新闻信息等系统功能,为用户提供个性化的新闻推荐服务。通过该系统,用户能够更方便快捷地获取到符合自己兴趣和需求的新闻内容,同时新闻发布者也能更有效地将新闻信息传递给目标受众。本研究期望通过技术手段解决用户在新闻信息获取过程中的痛点问题,提升新闻信息的传播效率和准确性。
研究内容
本研究将围绕智能新闻推荐系统的用户、新闻分类和新闻信息等核心功能展开。在用户方面,系统将收集用户的浏览历史、点击行为、评论等数据,构建用户画像,以反映用户的兴趣偏好。在新闻分类方面,系统将采用自然语言处理和机器学习算法对新闻内容进行分类和标签化,以便更精准地匹配用户需求。在新闻信息方面,系统将整合多个新闻源的数据,确保新闻内容的丰富性和多样性。通过这些功能模块的协同作用,智能新闻推荐系统将实现新闻内容的个性化推荐和精准推送。
进度安排:
2023.12.6-2023.12.30查询相关资料,做好开题报告,提交指导老师审核。
2024.1.1-2024.1.30做好系统需求分析,确定系统总体设计方案。
2024.2.1-2024.2.28进行系统的设计。
2024.3.1-2024.3.30进行系统的编码实现。
2024.4.1-2024.4.30系统测试、总结、撰写毕业设计说明书,并提交初稿。
2024.5.1-2024.5.20毕业设计说明书进行修改,提交定稿,提请答辩。
参考文献:
[1] 王春明. "基于Unittest的Python测试系统"[J]. 数字通信世界, 2023, (03): 66-69.
[2] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.
[3] 张敏. "C语言与Python的数据存储研究"[J]. 山西电子技术, 2023, (02): 83-85.
[4] 李俊华. "基于Python的数据分析"[J]. 电子技术与软件工程, 2018, No.139(17): 167.
[5] Arun C. S. Kumar and S. Panda. "A Survey: How Python Pitches in IT-World." International Conference Machine Learning, Big Data, Cloud and Parallel Computing (2019). 248-251.
[6] 王泽儒, 冯军军. "信息安全工具库的设计与实现"[J]. 电脑与电信, 2023, (03): 69-72.
[7] 曹雪朋. "基于Django的数据分析系统设计与实现"[J]. 信息与电脑(理论版), 2023, 35 (15): 141-143.
[8] 张珩. "Python的计算机软件应用技术探讨"[J]. 电脑知识与技术, 2020, 16(32): 96-97+102.
[9] 蔡迪阳. "基于Python的网页信息爬取技术分析"[J]. 科技资讯, 2023, 21 (13): 31-34.
[10] 孙自立. "Python语言视域下网络爬虫系统开发研究"[J]. 软件, 2022, 43(03): 109-111.
[11] Guttu Sai Abhishek, Harshad Ingole et al. "SPEAR: Semi-supervised Data Programming in Python." Conference on Empirical Methods in Natural Language Processing (2021).
[12] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.
[13] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端技术栈
Vue.js:是一个用于构建用户界面的渐进式JavaScript框架。允许开发者通过声明式渲染来创建动态的单页应用(SPA)。
HTML (HyperText Markup Language):用于创建网页的标准标记语言。定义网页的结构和内容,如段落、链接、图片等。
CSS (Cascading Style Sheets):用于描述HTML文档的样式和布局。可以控制字体、颜色、间距、布局等视觉表现。
JavaScript:一种轻量级,解释型或即时编译型的编程语言。通常用于网页上实现交互效果,如表单验证、动态内容更新等。与Vue.js结合,可以创建复杂的用户界面。
后端技术栈
Python3.7.7:高级编程语言,以其清晰的语法和代码可读性而闻名。广泛用于后端开发、科学计算、数据分析等领域。
Flask:是一个用Python编写的轻量级Web应用框架。它提供了一组工具和功能来快速开发Web应用。特点包括简单性、灵活性和易于扩展。
MySQL:是一个关系型数据库管理系统(RDBMS),广泛用于存储、检索和管理数据。支持SQL(结构化查询语言),用于执行数据库操作,如查询、更新、插入和删除数据。
开发工具
PyCharm:是由JetBrains开发的一个集成开发环境(IDE),专为Python开发设计。
提供代码自动完成、项目管理、调试和测试支持等功能。社区版是免费的,适合个人开发者和学习者使用。
开发流程:
• 首先,使用HTML、CSS和JavaScript结合Vue.js构建前端界面,实现用户交互和动态内容展示。接着,在后端使用Python语言结合Flask框架开发RESTful API,处理前端请求并提供业务逻辑。同时,利用MySQL数据库进行数据存储和查询,确保数据的持久化和一致性。开发过程中,通过PyCharm IDE进行代码编写、调试和项目管理,确保开发效率和代码质量。最后,通过持续集成和测试,确保应用的稳定性和可靠性,完成开发后进行部署,使应用可以在服务器上运行并对外提供服务。整个流程注重模块化设计和分层架构,以便于维护和扩展。
使用者指南
理解基本概念:了解HTML、CSS和JavaScript的基本概念是非常重要的。
学习Vue.js:通过官方文档或在线课程学习Vue.js的基本用法和生态系统。
掌握Python:学习Python语言的基础,包括数据类型、控制流、函数和模块。
熟悉Flask框架:通过阅读Flask文档和教程来学习如何构建Web应用。
数据库知识:了解SQL语言和数据库设计原则,学习如何使用MySQL进行数据存储和管理。
实践项目:通过实际项目来应用所学知识,这是提高技能的最佳方式。