NLP界大佬Thomas Wolf等新书再次来袭——《Transformer自然语言处理》,附466页PDF+代码

在这里插入图片描述
这本大模型书籍 《Transformer自然语言处理》我已经打包好了,需要的朋友直接扫描下方无偿领取

自2017年推出以来,Transformer已迅速成为在各种自然语言处理任务上实现最先进结果的主导架构。如果你是一名数据科学家或程序员,这本实用的书向你展示了如何使用基于python的深度学习库hugs Face transformer来训练和扩展这些大型模型。

Transformers 已经被用来编写真实的新闻故事,改进谷歌搜索查询,甚至创造出讲笑话的聊天机器人。在本指南中,作者Lewis Tunstall、Leandro von Werra和Thomas Wolf(拥抱Transformers 的创始人之一)使用亲身实践的方法来教你Transformers如何工作,以及如何将它们集成到应用程序中。你会很快学到他们能帮你解决的各种任务。

为核心NLP任务构建、调试和优化Transformers模型,如文本分类、命名实体识别和回答问题

  • 学习如何使用Transformers进行跨语言迁移学习
  • 在真实世界中标签数据稀缺的场景中应用Transformers
  • 利用蒸馏、剪枝和量化等技术,使Transformers模型有效地用于部署
  • 从零开始训练Transformers ,学习如何扩展到多个GPU和分布式环境

本书的目标是让您能够构建自己的语言应用程序。为了达到这个目的,它关注于实际的用例,并且只在必要的时候深入研究理论。这本书的风格是动手操作,我们强烈建议您亲自运行代码示例来进行试验。本书涵盖了NLP中transformers的所有主要应用,每一章(除了少数例外)专门针对一个任务,结合一个实际的用例和数据集。每一章还介绍了一些额外的概念。以下是我们将涉及的任务和主题的一个高级概述:

  • 第一章,你好Transformers,介绍了Transformers,并把它们放到了背景中。它还介绍了“Hugging Face”生态系统。
  • 第二章文本分类,重点介绍了情感分析(一个常见的文本分类问题),并介绍了Trainer API。
  • 第三章,Transformer剖析,更深入地介绍了Transformer架构,为接下来的章节做准备。
  • 第四章,多语言命名实体识别,重点关注在多语言文本中识别实体的任务(一个令牌分类问题)。
  • 第五章,文本生成,探讨了Transformers模型生成文本的能力,并介绍了解码策略和度量。
  • 第六章,摘要,深入研究了文本摘要的复杂序列到序列任务,并探讨了该任务使用的度量。
  • 第七章“问答”,重点介绍了基于综述的问答系统的构建,并介绍了利用Haystack进行检索的方法。
  • 第八章《Transformers在生产中高效运行》,重点介绍了模型性能。我们将着眼于意图检测的任务(序列分类问题的一种类型),并探索知识蒸馏、量化和剪枝等技术。
  • 第九章,处理很少或没有标签,着眼于在没有大量标签数据的情况下提高模型性能的方法。我们将构建一个GitHub问题标签和探索技术,如零样本分类和数据增强。
  • 第十章,从头开始训练Transformer,向您展示了如何从头开始构建和训练一个自动完成Python源代码的模型。我们将研究数据集流和大规模培训,并构建我们自己的标记器。
  • 第十一章,未来方向,探讨了Transformers面临的挑战和一些令人兴奋的新方向的研究,在这一领域将进入。

代码:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍!

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

五、AI大模型面试题库
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值