【论文笔记-semantic segmentation】deeplabv3+

deeplab_v3

deeplab_v3+

deeplab_v3+设计了一种新的encoder-decoder结构

  • encoder:deeplab_v3+使用deeplab_v3的结构作为encoder, encoding之后得到size = 1/16 input size的feature map
  • decoder:以前的方法直接设计一个16倍的比linear upsampling layer作为decoder。在这里,我们首先对encoder的输出进行4倍的linearly upsampling。然后,我们从encoder部分提取同样size的feature map(low-level feature)和当前的feature map拼接。当然,这里我们先对low-level feature用1x1卷积进行降维,防止网络认为它的重要性超过encoder提取的丰富的语义信息,同时降低训练的复杂度。最后我们使用少量的3x3的conv进行refine 并再次进行4倍的linearly upsampling得到输出。
阅读更多
个人分类: 深度学习
上一篇为什么encoder-decoder结构可以提取sharp object boundry(未完成)
下一篇ResNet 理解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭