Grok-4.1与Gemini 3 Pro 同期发布,在学术科研和论文写作场景如何选择使用?实测教程一篇讲清

AI更新换代真是越来越快了,想必各位同仁都深有感触;以往的一些旧模型还没用熟悉呢,这阵子马斯克和谷歌旗下又分别发布了Grok4.1和Gemini 3pro。

不过这些AI模型迭代的再快,其实核心目的只有一个:那就是让用户借助它产出更有价值的东西。

对咱们来说,其实不用纠结哪款模型更强,关键是先理清楚自己的核心诉求。比如在学术科研领域,得先明确要用模型做什么?是处理数据、撰写综述,还是开展跨学科探索。搞清楚你的核心诉求后,才能更精准地去选择合适的AI工具。

接下来七哥就针对新发布的这两款新模型,具体说说它们做了哪些升级,以及升级之后在学术科研场景中,分别能辅助做什么。

1、Grok-4.1

官方文档介绍Grok-4.1在创意、情感和协作互动方面表现出色,可以敏锐地抓住你的小心思,更容易沟通,且非常有个性,同时还完全保留了前一代的智能与可靠性。分为通用版Grok-4.1,还有个推理版Grok-4.1-Thinking。

实际总结下来,4.1模型主要在文本生成能力、情商、创意写作、幻觉上做了升级,以下是一些官方的数据。

1)LMArena Text Leaderboard(文本生成能力):Grok 4.1 Thinking 在 LMArena 的 Text Arena 中以 1483 Elo 分拿下第一,而通用模式以 1465 Elo 分排在第二,超越了Gemini、Claude、GPT等主流模型。

### 如何在AI开发中使用Grok-3模型 Grok-3 是一种先进的预训练语言模型,在自然语言处理领域具有广泛的应用潜力。为了有效地利用 Grok-3 进行人工智能开发,开发者通常遵循特定的工作流程。 #### 获取并加载模型 首先,需要通过官方渠道获取 Grok-3 的权重文件以及相应的配置参数。这一步骤对于确保模型能够正常运行至关重要[^1]。一旦下载完成,可以借助 Python Hugging Face 提供的 `transformers` 库来加载该模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_grok_3_model") model = AutoModelForCausalLM.from_pretrained("path_to_grok_3_model") ``` #### 数据准备预处理 为了让 Grok-3 更好地理解输入数据,必须对其进行适当的编码转换。这里推荐采用 BPE(Byte Pair Encoding) 或类似的分词技术,这些方法已经被证明能有效提高模型的表现力[^2]。具体实现如下所示: ```python input_text = "Your input text here." inputs = tokenizer(input_text, return_tensors="pt") ``` #### 推理过程 当一切就绪之后,就可以调用模型来进行推理操作了。此时只需简单传递之前准备好的 tokenized inputs 即可获得预测结果。值得注意的是,由于 Grok-3 属于因果语言模型(Causal Language Model),因此其更适合用于生成式任务而非分类等问题。 ```python outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` #### 结果评估优化 最后,应当基于实际应用场景对输出质量做出评价,并据此调整超参设置或改进前序步骤中的某些环节以期达到更优效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七哥AI学术实操笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值