Salting technique

Join salt technique

Salting is a technique used to distribute data more evenly across partitions, preventing skewness and improving the efficiency of certain operations such as joins in distributed computing frameworks like Apache Spark.

Salting Technique to Handle Skewed data in Apache Spark

example
  • 参考链接

https://medium.com/@nikaljeajay36/understanding-salting-in-spark-a-practical-guide-bf30f4525f64
https://www.google.com/search?q=Salting+Technique+to+Handle+Skewed+data+in+Apache+Spark&sca_esv=7e619e38cdd6dc6b&sca_upv=1&source=hp&ei=unflZq6uHI-nvr0PquPXeQ&iflsig=AL9hbdgAAAAAZuWFyn7naUNDZEt5uKpQLC6z5T1X4RdZ&ved=0ahUKEwiu86OxrsKIAxWPk68BHarxNQ8Q4dUDCA0&uact=5&oq=Salting+Technique+to+Handle+Skewed+data+in+Apache+Spark&gs_lp=Egdnd3Mtd2l6IjdTYWx0aW5nIFRlY2huaXF1ZSB0byBIYW5kbGUgU2tld2VkIGRhdGEgaW4gQXBhY2hlIFNwYXJrMgUQIRigAUikAVAAWABwAHgAkAEAmAGNAaABjQGqAQMwLjG4AQPIAQD4AQL4AQGYAgGgApMBmAMAkgcDMC4xoAeYAg&sclient=gws-wiz#fpstate=ive&vld=cid:5aa0dbd7,vid:58ztgLclQ64,st:0

import org.apache.spark.sql.functions.{expr, col, lit, concat, floor, rand}

// Generate data for cities
val cityData = Seq.fill(1000)("Aurangabad") ++ Seq.fill(100)("Mumbai") ++ Seq.fill(10)("Chennai") ++ Seq("Hyderabad")
// Create DataFrame for cities
val cityDF = cityData.toDF("city")

这里 Aurangabad 是一个倾斜 key, skew key

val saltedCityDF = cityDF.
   withColumn("Left_city_salt_key", concat(col("city"), lit("_"), floor(rand(123456) * 19)))
// Generate data for states
val stateData = Seq(("Aurangabad", "Maharashtra"), 
                    ("Mumbai", "Maharashtra"), 
                    ("Chennai", "TamilNadu"),
                    ("Hyderabad", "Telangana"))

// Create DataFrame for states
val stateDF = stateData.toDF("cityname", "state")

对维度表,使用 explode 加 salt

val saltedStateDF = stateDF.
withColumn("salt_key", expr("explode(array(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19))")).
withColumn("right_city_salt_key", concat(col("cityname"), lit("_"), col("salt_key")))


// Perform inner join between salted city names and salted city names in states
val joinedDF = saltedCityDF.join(saltedStateDF, saltedCityDF("Left_city_salt_key") === saltedStateDF("right_city_salt_key"), "inner")

scala> joinedDF.count
res32: Long = 1111

进行校验

scala> val originDF = cityDF.join(stateDF, cityDF("city") === stateDF("cityname"), "inner")
originDF: org.apache.spark.sql.DataFrame = [city: string, cityname: string ... 1 more field]

scala> originDF.count
res33: Long = 1111

Salting is a powerful technique for improving the performance of distributed computing operations such as joins in Apache Spark. By adding randomness to the partition key, salting helps to distribute data more evenly across partitions, reducing data skew and improving resource utilization. By implementing salting in your Spark applications, you can achieve better performance and scalability, especially when dealing with skewed datasets.

Salt 基本原则

a random number is appended to keys in big table with skew data from a range of random data and the rows in small table with no skew data are duplicated with the same range of random numbers.

Agg salt technique

import org.apache.spark.sql.functions._

df.withColumn("salt", (rand * n).cast(IntegerType))
  .groupBy("salt", groupByFields)
  .agg(aggFields)
  .groupBy(groupByFields)
  .agg(aggFields)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值