问1:单量预测模型怎么演进的?
答1:1)背景:对低敏感度的用户加配送费(单量损失少),对高敏感度的用户减配送费(单量增加多),在保证收入的前提下,提高单量
2)具体这个模型构建其实经理了3个阶段
2.1)第一个阶段,预测目标是每个配送区每天的单量,使用特征包括配送区优惠力度,是否工作日,使用的算法是线性回归。每个配送区一个模型
2.2)第二个阶段,预测目标是每个配送区每天的单量,使用特征为历史1天、3天、7天、15天单量,配送费,uv,优惠力度,使用算法为随机森林,线性回归。多个配送区一个模型。
2.3)第三个阶段,预测目标是单量变化比例,使用特征为配送费变化,uv变化,优惠力度变化,使用算法是半对数模型。每个城市一个模型,相似城市公用一个模型。
问2:以上三个模型有什么区别?
答2:1)模型3是最终使用的模型,模型1和模型2在我们的场景下无法使用
2)首先,模型1来说,前期预测效果不错,后期预测效果变坏。原因是:
2.1)前期单量近似线性增长,优惠力度也程线性增长,两者间呈线性关系,我们用线性模型拟合,效果好
2.2)后期单量仍然存在自然的线性增长,优惠力度不增长,甚至某些区域出现下降,两者间不存在线性关系,所以拟合效果不好 <
答1:1)背景:对低敏感度的用户加配送费(单量损失少),对高敏感度的用户减配送费(单量增加多),在保证收入的前提下,提高单量
2)具体这个模型构建其实经理了3个阶段
2.1)第一个阶段,预测目标是每个配送区每天的单量,使用特征包括配送区优惠力度,是否工作日,使用的算法是线性回归。每个配送区一个模型
2.2)第二个阶段,预测目标是每个配送区每天的单量,使用特征为历史1天、3天、7天、15天单量,配送费,uv,优惠力度,使用算法为随机森林,线性回归。多个配送区一个模型。
2.3)第三个阶段,预测目标是单量变化比例,使用特征为配送费变化,uv变化,优惠力度变化,使用算法是半对数模型。每个城市一个模型,相似城市公用一个模型。
问2:以上三个模型有什么区别?
答2:1)模型3是最终使用的模型,模型1和模型2在我们的场景下无法使用
2)首先,模型1来说,前期预测效果不错,后期预测效果变坏。原因是:
2.1)前期单量近似线性增长,优惠力度也程线性增长,两者间呈线性关系,我们用线性模型拟合,效果好
2.2)后期单量仍然存在自然的线性增长,优惠力度不增长,甚至某些区域出现下降,两者间不存在线性关系,所以拟合效果不好 <