bzoj 1036 洛谷 p2590 [ZJOI2008]树的统计

16 篇文章 0 订阅
5 篇文章 0 订阅

题目描述

一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。

我们将以下面的形式来要求你对这棵树完成一些操作:

I. CHANGE u t : 把结点u的权值改为t

II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值

III. QSUM u v: 询问从点u到点v的路径上的节点的权值和

注意:从点u到点v的路径上的节点包括u和v本身

输入输出格式

输入格式:
输入文件的第一行为一个整数n,表示节点的个数。

接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。

接下来一行n个整数,第i个整数wi表示节点i的权值。

接下来1行,为一个整数q,表示操作的总数。

接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。

输出格式:
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

输入输出样例

输入样例#1:
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
输出样例#1:
4
1
2
2
10
6
5
6
5
16
说明

对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#define int long long
#define ls id<<1
#define rs id<<1|1
using namespace std;
const int N=100005;
int n,m,r,p,tot,dcnt,q;
int w[N],head[N*2],mp[N];
struct NODE{
    int to,nex;
}ed[N*2];
struct node{
    int fa,son,sz,dep,top,s,e;
}tr[N];//树链剖分
struct Segtree{
   int l,r;
   int sum,lazy,maxx;
}tree[4*N];
inline void addedge(int x,int y){
    ++tot;
    ed[tot].nex=head[x];
    head[x]=tot;
    ed[tot].to=y;
}
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
    while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return f*x;
}
void dfs1(int u){
    tr[u].sz=1;
    for(int i=head[u];i;i=ed[i].nex)
       if(ed[i].to!=tr[u].fa){
             tr[ed[i].to].fa=u;
             tr[ed[i].to].dep=tr[u].dep+1;
             dfs1(ed[i].to);
             tr[u].sz+=tr[ed[i].to].sz;
             if(tr[ed[i].to].sz>tr[tr[u].son].sz){
                  tr[u].son=ed[i].to;
             }
    }
}
void dfs2(int u,int top){
    tr[u].top=top;
    tr[u].s=++dcnt;
    mp[dcnt]=u;
    if(tr[u].son){
        dfs2(tr[u].son,top);
        for(int i=head[u];i;i=ed[i].nex)
         if(ed[i].to!=tr[u].fa&&ed[i].to!=tr[u].son)
         dfs2(ed[i].to,ed[i].to);        
    }
    tr[u].e=dcnt;
}
inline void update(int b){
    tree[b].sum=tree[b*2].sum+tree[b*2+1].sum;
    tree[b].maxx=max(tree[b*2].maxx,tree[b*2+1].maxx);
}
void build(int b,int l,int r){
    tree[b].l=l;
    tree[b].r=r;
    if(l==r){
        tree[b].sum=tree[b].maxx=w[mp[l]];
        return ;
    }
    int mid=l+r>>1;
    build(b*2,l,mid);
    build(b*2+1,mid+1,r);
    update(b);
}
int qsum(int id,int l,int r)
{
    if(tree[id].l>r || tree[id].r<l)return 0;
    if(tree[id].l>=l && tree[id].r<=r)return tree[id].sum;
    return (qsum(id*2,l,r)+qsum(id*2+1,l,r));
}
int qmax(int id,int l,int r){
    int ans=-1e9;
    if(tree[id].l>r || tree[id].r<l)return -1e9;
    if(tree[id].l>=l && tree[id].r<=r)return max(ans,tree[id].maxx);
    return max(qmax(id*2,l,r),qmax(id*2+1,l,r));
}
int query(int x,int y){
    int f1=tr[x].top;
    int f2=tr[y].top;
    int ans=0;
    while(f1!=f2){
        if(tr[f1].dep<tr[f2].dep){
            swap(x,y);
            swap(f1,f2);
        }
        ans+=qsum(1,tr[f1].s,tr[x].s);
        x=tr[f1].fa;
        f1=tr[x].top;
    }
    if(tr[x].dep>tr[y].dep) swap(x,y);    
    return ans=ans+qsum(1,tr[x].s,tr[y].s);
}
int find(int x,int y){
    int f1=tr[x].top;
    int f2=tr[y].top;
    int ans=-10000000;
    while(f1!=f2){
        if(tr[f1].dep<tr[f2].dep){
            swap(x,y);
            swap(f1,f2);
        }
        ans=max(ans,qmax(1,tr[f1].s,tr[x].s));
        x=tr[f1].fa;
        f1=tr[x].top;
    }
    if(tr[x].dep<tr[y].dep)
     ans=max(ans,qmax(1,tr[x].s,tr[y].s));
    else 
      ans=max(ans,qmax(1,tr[y].s,tr[x].s));
    return ans;
}
void change(int b,int x,int y,int z){
    if(y<tree[b].l||x>tree[b].r) return ;
    if(tree[b].l==tree[b].r){
        tree[b].maxx=z;
        tree[b].sum=z;
        return ;
    }
    change(b*2,x,y,z);
    change(b*2+1,x,y,z);
    update(b);
}
main(){
    n=read();
    for(int i=1;i<n;i++){
      int x,y;
      x=read();
      y=read();
      addedge(x,y);
      addedge(y,x);
    }
    for(int i=1;i<=n;i++)  w[i]=read();
    dfs1(1);
    dfs2(1,1);
    build(1,1,n);
    q=read();
    for(int i=1;i<=q;i++){
        string mode;
        int x,y,z;
        cin>>mode;
        if(mode=="QSUM")
        {
            scanf("%lld%lld",&x,&y);
            printf("%lld\n",query(x,y));
        }
        else if(mode=="CHANGE")
        {
            scanf("%lld%lld",&x,&z);
            change(1,tr[x].s,tr[x].s,z);
        }
        else if(mode=="QMAX")
        {
            scanf("%lld%lld",&x,&y); 
            printf("%lld\n",find(x,y));
        }
    }
    return 0;
}

注意这题输入有负数,求ans要搞好初值

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值