Xgboost使用教程

参数

Xgboost的参数分为三种:

通用参数(General Parameters)

该参数控制在提升(boosting)过程中使用哪种booster,常用的booster有树模型(tree)和线性模型(linear model)。

参数 说明
booster 有两种模型可以选择gbtree和gblinear,[default=gbtree]。gbtree使用基于树的模型进行提升计算,gblinear使用线性模型进行提升计算
silent 取0时表示打印出运行时信息,取1时不打印运行时的信息。[default=0]
nthread [default 当前系统可以获得的最大线程数]
num_feature boosting过程中用到的特征维数,设置为特征个数。XGBoost会自动设置,不需要手工设置

Booster参数(Booster Parameters)

这取决于使用哪种booster。

(1)tree booster

参数 说明
eta [default=0.3],为了防止过拟合,更新过程中用到的收缩步长。在每次提升计算之后,算法会直接获得新特征的权重。 eta通过缩减特征的权重使提升计算过程更加保守。
gamma [default=0],模型在默认情况下,对于一个节点的划分只有在其loss function 得到结果大于0的情况下才进行,而gamma 给定了所需的最低loss function的值
max_depth [default=6],树的深度越大,则对数据的拟合程度越高(过拟合程度也越高)。即该参数也是控制过拟合,常取值:3-10
min_child_weight [default=1],孩子节点中最小的样本权重和。如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束。在现行回归模型中,这个参数是指建立每个模型所需要的最小样本数。调大这个参数能够控制过拟合,取值范围为: [0,∞]
max_delta_step [default=0],通常不需要此参数
subsample [default=1],用于训练模型的子样本占整个样本集合的比例。如果设置为0.5则意味着XGBoost将随机的从整个样本集合中抽取出50%的子样本建立树模型,这能够防止过拟合。
colsample_bytree [default=1],在建立树时对特征随机采样的比例
scale_pos_weight [default=0],大于0的取值可以处理类别不平衡的情况。帮助模型更快收敛

(2)linear booster

参数 说明
lambda [default=0],L2 正则的惩罚系数
alpha [default=0],L1 正则的惩罚系数
lambda_bias [default=0],在偏置上的L2正则

学习目标参数(Task Parameters)

控制学习的场景,例如在回归问题中会使用不同的参数控制排序

参数 说明
objective [ default=reg:linear ],定义学习任务及相应的学习目标,可选的目标函数如下:
“reg:linear”,线性回归(默认值)。
“reg:logistic”,逻辑回归。
“binary:logistic”,二分类的逻辑回归问题,输出为概率。
“multi:softmax”,采用softmax函数处理多分类问题,同时需要设置参数num_class用于指定类别个数
eval_metric 用于指定评估指标,可以传递各种评估方法组成的list。常用的评估指标如下:
rmse’,用于回归任务
‘mlogloss’,用于多分类任务
error’,用于二分类任务
‘auc’,用于二分类任务
seed [ default=0 ],随机数的种子
num_class 用于设置多分类问题的类别个数。

实例

XGBClassifier

1、初始化模型

from xgboost import XGBClassifier
# 重要参数:
xgb_model = XGBClassifier(
    max_depth=3,
    learning_rate=0.1,
    n_estimators=100, # 使用多少个弱分类器
    objective='binary:logistic',
    booster
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值