sklearn中RandomForest详解

随机森林基本原理

随机森林是一种bagging算法。bagging是一种随机采样(bootsrap)算法,与boosting不同,bagging弱学习器之间没有依赖关系,bagging通过采样训练不同的模型,然后进行组合。随机森林通过采样训练不同的决策树模型,然后进行组合。

在这里插入图片描述

注:注意到这和GBDT的子采样是不同的。GBDT的子采样是无放回采样,而Bagging的子采样是放回采样。

随机森林中的随机性表现在:(1)在随机森林中的每棵树都是根据训练集中的随机抽样的样本构建的。(2)在树的构造过程中拆分每个节点时,最好的切分点可能出现在所有的特征中也可能所有特征的一个特征子集中(子集大小为max_features)

这两个随机性是为了减少减少森林估计量的方差,单个决策树通常表现出较高的方差并且倾向于过度拟合。在森林中注入的随机性产生决策树,随机森林通过组合不同的树木得到预测的平均值,可以减小预测误差(方差),但略微增加偏差。

注:scikit-learn实现通过平均分类器的概率预测来组合分类器,而不是让每个分类器对单个分类投票。

优缺点:

(1) 训练可以高度并行化,对于大数据时代的大样本训练速度有优势

(2) 由于可以随机选择决策树节点划分特征,这样在样本特征维度很高的时候,仍然能高效的训练模型。

(3) 在训练后,可以给出各个特征对于输出的重要性

RandomForestClassifier

参数说明

随机森林分类,sklearn 中的接口如下:

sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

参数

参数 说明
n_estimators 决策树的个数,若n_estimators太小容易欠拟合,太大不能显著的提升模型,所以n_estimators选择适中的数值。必须设置
bootstrap 是否对样本集进行有放回抽样来构建树,默认值True。
oob_score 是否采用袋外样本来评估模型的好坏,默认false,推荐设置True。
max_features 构建决策树最优模型时考虑的最大特征数。默认是"auto",表示最大特征数是N的平方根;“log2"表示最大特征数是 log_{2}N ;"sqrt"表示最大特征数是 \sqrt{N} 。如果是整数,代表考虑的最大特征数;如果是浮点数,表示对(N * max_features)取整。其中N表示样本的特征数。
max_depth 决策树最大深度。默认None,表示决策树在构建最优模型的时候不会限制子树的深度。如果模型样本量多,特征也多的情况下,推荐限制最大深度;若样本量少或者特征少,则不限制最大深度。
min_samples_leaf 叶子节点含有的最少样本。若叶子节点样本数小于min_samples_leaf,则对该叶子节点和兄弟叶子节点进行剪枝,只留下该叶子节点的父节点。整数型表示个数,浮点型表示取大于等于(样本数 * min_samples_leaf)的最小整数。min_samples_leaf默认值是1。
min_samples_split 节点可分的最小样本数,默认值是2。整数型和浮点型的含义与min_samples_leaf类似。
max_leaf_nodes 最大叶子节点数。int设置节点数,None表示对叶子节点数没有限制。
min_impurity_decrease 节点划分的最小不纯度。假设不纯度用信息增益表示,若某节点划分时的信息增益大于等于min_impurity_decrease,那么该节点还可以再划分;反之,则不能划分。
criterion 表示节点的划分标准。两种取值:entropy,默认"gini。"不纯度标准参考Gini指数,信息增益标准参考"entrop"熵。
min_samples_leaf 叶子节点最小的样本权重和。叶子节点如果小于这个值,则会和兄弟节点一起被剪枝,只保留叶子节点的父节点。默认是0,则不考虑样本权重问题。一般来说,如果有较多样本的缺失值或偏差很大,则尝试设置该参数值。
warm_start 默认为False,设置True为时,重用上一个调用的解决方案以适应并向集合添加更多估计量,否则,仅适应一个全新的森林
class_weight 默认无,{“ balanced”,“ balanced_subsample”}。
对于四分类问题,指定方式:[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}]而不是[{1:1}, {2:5}, {3:1}, {4:1}]。
max_samples 从X抽取以训
### 回答1: 随机森林是一种基于集成学习的分类和回归算法,它通过利用多个决策树的预测结果进行集成来提高模型的准确性和稳定性。基于Python中的scikit-learn库,我们可以很方便地使用随机森林算法。 具体步骤如下: 1. 数据准备:首先,我们需要将数据集划分为训练集和测试集。同时,我们也需要将特征属性和目标属性进行分离。 2. 模型训练:使用sklearn库中的RandomForestClassifier(分类问题)或者RandomForestRegressor(回归问题)类来构建随机森林模型。这些类提供了一系列的超参数(如树的数量、最大深度等),你可以根据需要进行设置。 3. 特征选择:随机森林可以根据特征的重要性进行特征选择。通过调用模型的feature_importances_属性,我们可以获得每个特征的重要性分数。这样可以帮助我们了解哪些特征对预测结果的贡献更大。 4. 模型评估:使用测试集对训练好的模型进行评估。可以使用准确率、精确率、召回率等指标来评估分类问题的模型,使用均方误差(MSE)、决定系数(R方)等指标来评估回归问题的模型。 5. 模型优化:根据评估结果,我们可以调整模型的超参数来进一步提高模型的性能。可以尝试不同的树的数量、最大深度、节点分裂准则等来找到最优的参数组合。 总的来说,随机森林是一种强大而灵活的机器学习算法,可以广泛应用于各种分类和回归问题中。通过结合多个决策树的预测结果,它可以降低过拟合的风险,并且能够处理大量的特征和样本。通过使用Python中的scikit-learn库,我们可以很方便地构建和应用随机森林模型,这是一种非常值得学习和使用的算法。 ### 回答2: 随机森林Random Forest)是一种机器学习算法,是由多个决策树组成的集成模型。它是基于Python的scikit-learn库实现的。 随机森林通过利用决策树的集成方法来提高模型的准确性和稳定性。它首先会从给定的数据集中随机选择部分数据进行有放回抽样,建立一系列决策树模型。在构建每一个决策树时,它会随机选择特征子集进行决策树的训练。这样做的目的是为了减少过拟合,并且提高模型的泛化能力。 在随机森林中,每个决策树都会按照划分特征的重要性(例如信息增益)来选择最佳的划分点,使得每个树都能尽可能地减小预测误差。而在预测时,每个树都会独立地给出预测结果,最后通过投票或平均来确定最终的预测结果。 随机森林具有以下优点: 1. 随机森林适用于各种类型的数据,可以处理离散型和连续型特征,可以用于分类和回归问题。 2. 随机森林具有较好的准确性和泛化能力,能够有效地处理大规模的数据集。 3. 随机森林能够评估特征的重要性,可以通过特征选择来提高建模的效果。 4. 随机森林相对于单独的决策树更不容易过拟合,具有更高的稳定性和抗噪能力。 在Python的scikit-learn库中,使用随机森林的步骤如下: 1. 导入随机森林模块:from sklearn.ensemble import RandomForestClassifier(或RandomForestRegressor) 2. 创建随机森林对象:rf = RandomForestClassifier(n_estimators=10, max_depth=5) - n_estimators指定决策树的数量 - max_depth指定每个决策树的最大深度 3. 训练模型:rf.fit(X_train, y_train) 4. 预测分类结果:y_pred = rf.predict(X_test) 5. 评估模型的准确率:accuracy = rf.score(X_test, y_test) 6. 查看特征的重要性:importances = rf.feature_importances_ 总而言之,基于Python的scikit-learn库实现的随机森林是一种强大的机器学习算法,能够有效地处理各种类型的数据,并且具有较好的准确性和泛化能力。通过随机选择特征子集和有放回抽样,随机森林能够降低过拟合的风险,并且能够评估特征的重要性。 ### 回答3: 随机森林Random Forest)是一种基于决策树的集成学习方法,在python中可以使用scikit-learn库中的sklearn.ensemble模块来实现。 随机森林的基本原理是通过构建多个决策树,并对其结果进行综合来做出决策。其中每个决策树的构建过程都是随机的,这包括随机选择特征和随机选择样本。这样可以降低过拟合的风险,并提高模型的鲁棒性和泛化能力。 在使用sklearn.ensemble模块中的RandomForestClassifier和RandomForestRegressor类时,我们可以通过一些参数对随机森林模型进行调参。其中一些重要的参数包括: 1. n_estimators:决策树的个数。一般来说,n_estimators越大,模型的性能越好,但同时计算时间也会增加。 2. max_features:每个决策树构建时随机选择的特征数。一般建议将其设置为总特征数的平方根。 3. max_depth:每个决策树的最大深度。通常情况下,max_depth设置为None表示不限制决策树的深度,但这容易导致过拟合。 在使用随机森林模型时,我们可以通过fit()方法对模型进行训练,然后可以使用predict()方法对新数据进行预测。此外,还可以使用score()方法来评估模型的准确性。 总之,随机森林是一种强大的机器学习方法,它可以有效处理高维、复杂的数据,并在一定程度上避免了过拟合问题。使用sklearn中的RandomForestClassifier和RandomForestRegressor模块,我们可以方便地构建和调整随机森林模型,以满足不同的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值