tensorflow2.0实现复杂神经网络(多输入多输出nn,Resnet)

常见的‘融合’操作

复杂神经网络模型的实现离不开"融合"操作。常见融合操作如下:

(1)求和,求差

# 求和
layers.Add(inputs)
# 求差
layers.Subtract(inputs)

inputs: 一个输入张量的列表(列表大小至少为 2),列表的shape必须一样才能进行求和(求差)操作。

例子:

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
added = keras.layers.add([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)

(2)乘法

# 输入张量的逐元素乘积(对应位置元素相乘,输入维度必须相同)
layers.multiply(inputs)
# 输入张量样本之间的点积
layers.dot(inputs, axes, normalize=False) 

dot即矩阵乘法,例子1:

x = np.arange(10).reshape(1, 5, 2)

y = np.arange(10, 20).reshape(1, 2, 5)

# 三维的输入做dot通常像这样指定axes,表示矩阵的第一维度和第二维度参与矩阵乘法,第0维度是batchsize
tf.keras.layers.Dot(axes=(1, 2))([x, y])
# 输出如下:
<tf.Tensor: shape=(1, 2, 2), dtype=int64, numpy=
array([[[260, 360],
        [320, 445]]])>

例子2:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
dotted = tf.keras.layers.Dot(axes=1)([x1, x2])
dotted.shape
TensorShape([5, 1])

(3)联合:

# 所有输入张量通过 axis 轴串联起来的输出张量。
layers.add(inputs,axis=-1)
  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • axis: 串联的轴。

例子:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
concatted = tf.keras.layers.Concatenate()([x1, x2])
concatted.shape
TensorShape([5, 16])

(4)统计操作

求均值layers.Average()

input1 = tf.keras.layers.Input(shape=(16,))
x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
input2 = tf.keras.layers.Input(shape=(32,))
x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
avg = tf.keras.layers.Average()([x1, x2])
# x_1 x_2 的均值作为输出
print(avg)
# <tf.Tensor 'average/Identity:0' shape=(None, 8) dtype=float32>

out = tf.keras.layers.Dense(4)(avg)
model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)

layers.Maximum()用法相同。

具有多个输入和输出的模型

假设要构造这样一个模型:

(1)模型具有以下三个输入

  • 工单标题(文本输入),
  • 工单的文本正文(文本输入),以及
  • 用户添加的任何标签(分类输入)

(2)模型将具有两个输出:

  • 介于 0 和 1 之间的优先级分数(标量 Sigmoid 输出)
  • 应该处理工单的部门(部门范围内的 Softmax 输出)。

模型大概长这样:

在这里插入图片描述

接下来开始创建这个模型。

(1)模型的输入

num_tags = 12
num_words = 10000
num_departments = 4

title_input = keras.Input(shape=(None,), name="title")  # Variable-length sequence of ints
body_input = keras.Input(shape=(None,), name="body")  # Variable-length sequence of ints
tags_input = keras.Input(shape=(num_tags,), name="tags")  # Binary vectors of size `num_tags`

(2)将输入的每一个词进行嵌入成64-dimensional vector

title_features  = layers.Embedding(num_words,64)(title_input)
body_features  = layers.Embedding(num_words,64)(body_input)

(3)处理结果输入LSTM模型,得到 128-dimensional vector

title_features = layers.LSTM(128)(title_features)
body_features = layers.LSTM(32)(body_features)

(4)concatenate融合所有的特征

x = layers.concatenate([title_features, body_features, tags_input])

(5)模型的输出

# 输出1,回归问题
priority_pred = layers.Dense(1,name="priority")(x)

# 输出2,分类问题
department_pred = layers.Dense(num_departments,name="department")(x)

(6)定义模型

model = keras.Model(
    inputs=[title_input, body_input, tags_input],
    outputs=[priority_pred, department_pred],
)

(7)模型编译

编译此模型时,可以为每个输出分配不同的损失。甚至可以为每个损失分配不同的权重,以调整其对总训练损失的贡献。

model.compile(
    optimizer=keras.optimizers.RMSprop(1e-3),
    loss={
        "priority": keras.losses.BinaryCrossentropy(from_logits=True),
        "department": keras.losses.CategoricalCrossentropy(from_logits=True),
    },
    loss_weights=[1.0, 0.2],
)

(8)模型的训练

# Dummy input data
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32")

# Dummy target data
priority_targets = np.random.random(size=(1280, 1))
dept_targets = np.random.randint(2, size=(1280, num_departments))

# 通过字典的形式将数据fit到模型
model.fit(
    {"title": title_data, "body": body_data, "tags": tags_data},
    {"priority": priority_targets, "department": dept_targets},
    epochs=2,
    batch_size=32,
)

ResNet 模型

通过add来实现融合操作,模型的基本结构如下:

# 实现第一个块
_input = keras.Input(shape=(32,32,3))
x = layers.Conv2D(32,3,activation='relu')(_input)
x = layers.Conv2D(64,3,activation='relu')(x)
block1_output = layers.MaxPooling2D(3)(x)

# 实现第二个块
x = layers.Conv2D(64,3,padding='same',activation='relu')(block1_output)
x = layers.Conv2D(64,3,padding='same',activation='relu')(x)
block2_output = layers.add([x,block1_output])


# 实现第三个块
x = layers.Conv2D(64, 3, activation="relu", padding="same")(block2_output)
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
block_3_output = layers.add([x, block2_output])

# 进入全连接层
x = layers.Conv2D(64,3,activation='relu')(block_3_output)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(256, activation="relu")(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(10)(x)

在这里插入图片描述

模型的定义与编译:


model = keras.Model(_input,outputs,name='resnet')

model.compile(
    optimizer=keras.optimizers.RMSprop(1e-3),
    loss='sparse_categorical_crossentropy',
    metrics=["acc"],
)

模型的训练

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 归一化
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
model.fit(tf.expand_dims(x_train,-1), y_train, batch_size=64, epochs=1, validation_split=0.2)

注:当loss = =keras.losses.CategoricalCrossentropy(from_logits=True)时,需对标签进行one-hot:

y_train = keras.utils.to_categorical(y_train, 10)
### 回答1: TensorFlow 2.可以通过使用Keras API来实现ResNet50模型。ResNet50是一种深度卷积神经网络,由50个卷积层组成,用于图像分类和目标检测等任务。 以下是使用TensorFlow 2.和Keras API实现ResNet50的示例代码: ```python import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.models import Model # 加载ResNet50模型 resnet = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # 冻结ResNet50模型的所有层 for layer in resnet.layers: layer.trainable = False # 添加自定义输出层 x = resnet.output x = Flatten()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(100, activation='softmax')(x) # 构建新模型 model = Model(inputs=resnet.input, outputs=predictions) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` 在上面的代码中,我们首先加载了预训练的ResNet50模型,并将其所有层都冻结。然后,我们添加了自定义的输出层,并使用Keras API构建了一个新模型。最后,我们编译了模型并指定了优化器、损失函数和评估指标。 接下来,我们可以使用该模型进行训练和预测。例如,我们可以使用以下代码加载图像数据集并训练模型: ```python from tensorflow.keras.preprocessing.image import ImageDataGenerator # 加载图像数据集 train_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( 'data/train', target_size=(224, 224), batch_size=32, class_mode='categorical') # 训练模型 model.fit_generator( train_generator, steps_per_epoch=200, epochs=50) ``` 在上面的代码中,我们使用Keras的ImageDataGenerator类加载了图像数据集,并指定了训练集的目录、图像大小和批量大小等参数。然后,我们使用fit_generator()方法训练模型,并指定了训练集的步数和训练轮数等参数。 最后,我们可以使用以下代码对新数据进行预测: ```python import numpy as np from tensorflow.keras.preprocessing import image # 加载测试图像 img_path = 'data/test/cat.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=) x = preprocess_input(x) # 预测图像类别 preds = model.predict(x) print('Predicted:', decode_predictions(preds, top=3)[]) ``` 在上面的代码中,我们使用Keras的image模块加载了测试图像,并将其转换为NumPy数组。然后,我们使用预处理函数preprocess_input()对图像进行预处理,并使用模型的predict()方法对图像进行预测。最后,我们使用decode_predictions()函数将预测结果转换为可读的格式。 ### 回答2: Tensorflow是一种流行的深度学习框架,它可以用来实现各种神经网络模型,包括ResNet。首先,需要安装Tensorflow2.0版本。进入Python环境,可以用命令`pip install tensorflow==2.0`来安装。 ResNet是一种广泛使用的深度卷积神经网络结构,其核心思想是使用残差模块来缓解深层网络中的梯度消失问题,以提高训练效果和模型的表现力。ResNet有很多变种,包括ResNet-50、ResNet-101等。这里以ResNet-50为例进行实现。 首先,需要导入必要的库,包括Tensorflow和相关的Keras模块: ``` import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Add, AvgPool2D, Dense, Flatten ``` 然后,定义ResNet-50的基本残差模块,包含两个卷积层和一个残差连接: ``` class ResidualBlock(keras.Model): def __init__(self, in_channels, out_channels, strides=1, use_bias=False): super(ResidualBlock, self).__init__() self.conv1 = keras.Sequential([ Conv2D(out_channels // 4, kernel_size=1, strides=1, use_bias=False), BatchNormalization(), ReLU() ]) self.conv2 = keras.Sequential([ Conv2D(out_channels // 4, kernel_size=3, strides=strides, padding='same', use_bias=False), BatchNormalization(), ReLU() ]) self.conv3 = keras.Sequential([ Conv2D(out_channels, kernel_size=1, strides=1, use_bias=False), BatchNormalization(), ]) self.shortcut = keras.Sequential() if strides != 1 or in_channels != out_channels: self.shortcut = keras.Sequential([ Conv2D(out_channels, kernel_size=1, strides=strides, use_bias=False), BatchNormalization(), ]) self.relu = ReLU() def call(self, inputs): x = self.conv1(inputs) x = self.conv2(x) x = self.conv3(x) shortcut = self.shortcut(inputs) x = Add()([x, shortcut]) x = self.relu(x) return x ``` 接着,定义ResNet-50的整体结构,包含多个残差模块和全连接层: ``` class ResNet(keras.Model): def __init__(self, block, num_blocks, num_classes): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = keras.Sequential([ Conv2D(64, kernel_size=7, strides=2, padding='same', use_bias=False), BatchNormalization(), ReLU(), AvgPool2D(pool_size=3, strides=2, padding='same') ]) self.layer1 = self._make_layer(block, 64, num_blocks[0], strides=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], strides=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], strides=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], strides=2) self.avgpool = AvgPool2D(pool_size=7, strides=1) self.flatten = Flatten() self.fc = Dense(num_classes, activation='softmax') def _make_layer(self, block, out_channels, num_blocks, strides): strides_list = [strides] + [1] * (num_blocks - 1) layers = keras.Sequential() for stride in strides_list: layers.add(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels return layers def call(self, inputs): x = self.conv1(inputs) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = self.flatten(x) x = self.fc(x) return x ``` 可以看到,ResNet-50的实现比较复杂,包含多个残差模块和全连接层。其中,`_make_layer`方法用来构建多个残差模块,`call`方法用来定义整个网络结构。最后可以用以下代码来进行模型的训练和测试: ``` model = ResNet(ResidualBlock, [3, 4, 6, 3], num_classes=10) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() x_train = x_train.astype('float32') / 255.0 x_test = x_test.astype('float32') / 255.0 y_train = keras.utils.to_categorical(y_train, num_classes=10) y_test = keras.utils.to_categorical(y_test, num_classes=10) model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_test, y_test)) ``` 这里的数据集是CIFAR-10,数据预处理和训练过程略。运行以上代码,就可以得到一个训练好的ResNet-50模型。 ### 回答3: ResNet50是Residual Network的一种经典架构,它能有效缓解深度卷积神经网络的梯度弥散问题,使得网络能够更深,参数更多,最终达到更好的性能。今天我们将介绍如何用TensorFlow 2.0实现ResNet50。 首先,我们导入相关的包: ``` import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, BatchNormalization, GlobalAveragePooling2D, Dropout, Flatten, Input, add from tensorflow.keras.models import Model ``` 然后我们定义ResNet50的基础单元,也叫作残差块。这个残差块由两层卷积、批归一化、Relu激活函数和一个恒等映射构成。就像这样: ``` def residual_block(inputs, filters, kernel_size, strides): shortcut = inputs x = Conv2D(filters[0], kernel_size=1, strides=strides, padding='valid')(inputs) x = BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) x = Conv2D(filters[1], kernel_size=kernel_size, strides=1, padding='same')(x) x = BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) x = Conv2D(filters[2], kernel_size=1, strides=1, padding='valid')(x) x = BatchNormalization()(x) if strides != 1 or inputs.shape[-1] != filters[2]: shortcut = Conv2D(filters[2], kernel_size=1, strides=strides, padding='valid')(shortcut) shortcut = BatchNormalization()(shortcut) x = add([x, shortcut]) x = tf.keras.layers.ReLU()(x) return x ``` 接下来定义ResNet50的完整模型。整个模型由7个卷积层、4个残差块和一个全连接层构成。就像这样: ``` def ResNet50(input_shape=(224, 224, 3)): inputs = Input(input_shape) x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs) x = BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x) x = residual_block(x, [64, 64, 256], kernel_size=3, strides=1) x = residual_block(x, [64, 64, 256], kernel_size=3, strides=1) x = residual_block(x, [64, 64, 256], kernel_size=3, strides=1) x = residual_block(x, [128, 128, 512], kernel_size=3, strides=2) x = residual_block(x, [128, 128, 512], kernel_size=3, strides=1) x = residual_block(x, [128, 128, 512], kernel_size=3, strides=1) x = residual_block(x, [128, 128, 512], kernel_size=3, strides=1) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=2) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=1) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=1) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=1) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=1) x = residual_block(x, [256, 256, 1024], kernel_size=3, strides=1) x = residual_block(x, [512, 512, 2048], kernel_size=3, strides=2) x = residual_block(x, [512, 512, 2048], kernel_size=3, strides=1) x = residual_block(x, [512, 512, 2048], kernel_size=3, strides=1) x = GlobalAveragePooling2D()(x) x = Dense(1000, activation='softmax')(x) model = Model(inputs=inputs, outputs=x) return model ``` 最后我们构建一个ResNet50模型,并使用ImageDataGenerator读取数据集和fit方法训练模型: ``` datagenerator_train = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1/255.0) datagenerator_test = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1/255.0) train_generator = datagenerator_train.flow_from_directory('./data/train', target_size=(224,224), batch_size=32, class_mode='categorical') valid_generator = datagenerator_test.flow_from_directory('./data/valid', target_size=(224,224), batch_size=32, class_mode='categorical') model = ResNet50() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=10, validation_data=valid_generator) ``` 现在,你已经成功地使用TensorFlow 2.0实现ResNet50模型,并使用ImageDataGenerator读取数据集和fit方法训练了模型,你可以拿到数据集进行测试并进行更多的调整,期望能够取得优秀的结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值