SNEC 2024:百思科储能与微网方案闪耀亮相

6月13日-15日,第十七届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC 2024)在上海国家会展中心成功举办。全球近100个国家和地区、3600多家知名企业汇聚一堂,展示光伏新能源领域的最新成果和前沿技术,携手共促绿色低碳智慧能源向新而行。

本次展会,百思科作为清洁能源领域领先的电池储能产品和解决方案以及智能微网解决方案提供商,亮相8.1H-A670展位。在本次盛大的能源技术展会上,百思科以其创新的微电网及储能系统解决方案吸引了众多参观者的眼球。

在这里插入图片描述

核心储能产品亮相,引现场观众围观

本次展会,百思科重点展示了三款核心储能产品:光储柴一体机、10尺集装箱储能一体机以及20尺集装箱储能一体机,每款产品都是针对不同应用场景精心设计,充分体现了公司在储能领域的深厚技术积累和市场洞察力。

在这里插入图片描述

首先,光储柴一体机作为百思科针对非洲农村电气化需求的明星产品,集成了光伏发电系统、高效储能装置及可靠的柴油发电机,形成了一套自给自足、灵活高效的能源供应方案。它不仅能够最大化利用丰富的太阳能资源,通过储能系统平滑电力输出,确保在阴雨天或夜间也能持续供电,而且在极端天气或高能耗时段,柴发系统能迅速介入,为偏远农村地区带来安全可靠、环保可持续的电力保障,有力推动了当地经济和社会的发展。

此外,面向海岛等特殊环境下的微网系统,百思科带来的10尺集装箱储能一体机展现了卓越的环境适应性。该设备采用高等级防护材料,有效抵御盐雾腐蚀和恶劣气候,加之模块化设计,使得安装与后期维护变得简便快捷。它的紧凑身形便于海运送达,一旦部署即可快速提升海岛的能源自给能力和应对自然灾害的韧性,为海岛居民和旅游设施提供稳定、清洁的能源供应。

最后,针对矿区等复杂工业场景下用能波动大、功率需求高的挑战,百思科设计的20尺集装箱储能一体机提供了突破性的解决方案。这款产品内置超大容量电池组和先进的能源管理系统,能够在瞬间响应高功率负载变化,保证矿产开采、加工等高能耗过程的连续稳定运行。其超多能量储备特性更是确保了即便在长周期无补充能源的情况下,仍能维持系统的正常作业,大大提升了矿区能源使用的经济性和安全性,为推动矿业绿色转型贡献了重要力量。

百思科的这三款展品不仅彰显了公司在集成能源解决方案上的创新实力,更是在解决全球多样化能源需求、促进可持续发展方面迈出了坚实的一步,为不同地域、不同行业提供了定制化的清洁能源应用范例。

在这里插入图片描述

在本次展会期间,德国莱茵TÜV Rheinland大中华区为百思科新能源技术(青岛)有限公司的工商储能系统产品颁发了EN 62477-1 CE_LVD认证证书,这一认证不仅是对百思科在储能系统领域技术实力和产品质量的充分肯定,更为公司在全球市场上进一步拓展业务提供了强有力的支撑。

智能微网方案,助力能源问题解决

本次展会,百思科还展示了农村电气化微网方案、海岛微网方案及矿区微网方案,为解决偏远及特殊地区能源供应难题提供了全新视角。

在这里插入图片描述

农村电气化微网方案:点亮非洲的希望之光

针对非洲农村地区普遍存在的电力短缺和供电不稳定问题,百思科精心设计的农村电气化微网方案成为展会的一大亮点。该方案综合运用太阳能,配合高效储能系统,为偏远农村带来稳定可靠的电力供应。通过智能化管理系统优化能源分配,不仅解决了当地居民的基本生活和生产用电需求,还为教育、医疗等公共服务设施的正常运行提供了保障,为非洲农村地区的经济发展和社会进步注入了强劲动力。

海岛微网方案:光伏储能,破解高成本困境

面对海岛地区长期困扰的高用电成本和电力供应不足问题,百思科提出的海岛微网方案以光伏发电为核心,结合先进的储能技术,打造了一套自给自足的能源生态系统。这套方案充分利用海岛丰富的阳光资源,大幅降低了对外部能源的依赖,同时减少了碳排放,促进了海岛经济的绿色可持续发展。

矿区微网方案:节能减排,赋能矿业转型升级

针对矿区高能耗、电力需求量大的特点,百思科的矿区微网解决方案通过整合分布式发电、智能微电网管理和高效储能系统,实现了对传统能源模式的革新。这一方案不仅有效补充了矿区的发电能力,降低了对外购电的依赖,还显著降低了总体能源成本。更重要的是,它推动了矿区向低碳、环保方向转型,提升了整个行业的能源利用效率。
在这里插入图片描述

随着全球对清洁能源需求的日益增长,百思科将继续深耕微电网及储能系统解决方案,探索更多可能性,为实现全球碳中和目标不懈努力。本次SNEC 2024的成功参展,不仅进一步巩固了百思科在储能技术领域的专业地位,也为公司未来的稳健发展奠定了坚实的基础。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
t-SNE是一种降维算法,可以将高维数据映射到二维或三维空间中进行可视化。下面是使用C++实现t-SNE的代码示例: ```c++ #include <iostream> #include <fstream> #include <ctime> #include <cmath> #include <cstring> #include <cstdlib> using namespace std; const double PI = 3.14159265358979323846; // 计算欧几里得距离的平方 double euclidean_distance_squared(const double* x, const double* y, int dim) { double dist = 0.0; for (int i = 0; i < dim; i++) { double diff = x[i] - y[i]; dist += diff * diff; } return dist; } // 计算高斯分布的概率密度 double gaussian_kernel(double distance_squared, double perplexity) { return exp(-distance_squared / (2 * perplexity * perplexity)); } // 随机初始化低维嵌入 void initialize_embedding(double* embedding, int n, int dim) { srand(time(NULL)); for (int i = 0; i < n * dim; i++) { embedding[i] = (rand() / (double)RAND_MAX - 0.5) / dim; } } // 计算t-SNE中的梯度和KL散度 void compute_gradient_kl(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity) { const int num_threads = 4; const double eps = 1e-12; memset(grad, 0, n * dim * sizeof(double)); // 计算Q矩阵,即低维空间点之间的相似度矩阵 double* Q = new double[n * n]; memset(Q, 0, n * n * sizeof(double)); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = gaussian_kernel(distance_squared, perplexity); Q[i * n + j] = probability; Q[j * n + i] = probability; } } // 对称化Q矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Q[i * n + j] = (Q[i * n + j] + Q[j * n + i]) / (2 * n); } } // 计算梯度和KL散度 #pragma omp parallel for num_threads(num_threads) for (int i = 0; i < n; i++) { double* grad_i = grad + i * dim; for (int j = 0; j < n; j++) { if (i == j) { continue; } double diff[dim]; double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = P[i * n + j]; probability /= (eps + P[j * n + i] + probability); probability *= Q[i * n + j]; probability -= (eps + Q[j * n + i]); for (int d = 0; d < dim; d++) { diff[d] = embedding[i * dim + d] - embedding[j * dim + d]; grad_i[d] += probability * diff[d]; } } } // 释放内存 delete[] Q; } // 计算t-SNE中的梯度和KL散度(加速版) void compute_gradient_kl_accelerated(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity) { const int num_threads = 4; const double eps = 1e-12; memset(grad, 0, n * dim * sizeof(double)); // 计算Q矩阵,即低维空间点之间的相似度矩阵 double* Q = new double[n * n]; memset(Q, 0, n * n * sizeof(double)); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = gaussian_kernel(distance_squared, perplexity); Q[i * n + j] = probability; Q[j * n + i] = probability; } } // 对称化Q矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Q[i * n + j] = (Q[i * n + j] + Q[j * n + i]) / (2 * n); } } // 计算梯度和KL散度 #pragma omp parallel for num_threads(num_threads) for (int i = 0; i < n; i++) { double* grad_i = grad + i * dim; for (int j = 0; j < n; j++) { if (i == j) { continue; } double diff[dim]; double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = P[i * n + j]; probability /= (eps + P[j * n + i] + probability); probability *= Q[i * n + j]; probability -= (eps + Q[j * n + i]); for (int d = 0; d < dim; d++) { diff[d] = embedding[i * dim + d] - embedding[j * dim + d]; grad_i[d] += probability * diff[d]; } } } // 释放内存 delete[] Q; } // 计算t-SNE中的梯度和KL散度(Barnes-Hut加速版) void compute_gradient_kl_bh(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity, double theta) { const int num_threads = 4; const double eps = 1e-12; memset(grad, 0, n * dim * sizeof(double)); // 创建Barnes-Hut树 double* position = new double[n * dim]; memcpy(position, embedding, n * dim * sizeof(double)); BarnesHutTree* tree = new BarnesHutTree(position, n, dim); tree->build(theta); // 计算梯度和KL散度 #pragma omp parallel for num_threads(num_threads) for (int i = 0; i < n; i++) { double* grad_i = grad + i * dim; for (int j = 0; j < n; j++) { if (i == j) { continue; } double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = P[i * n + j]; probability /= (eps + P[j * n + i] + probability); if (distance_squared > eps && tree->is_far_away(i, j, distance_squared)) { probability *= 0; } else { probability *= gaussian_kernel(distance_squared, perplexity); } probability -= (eps + tree->get_probability(i, j)); double diff[dim]; for (int d = 0; d < dim; d++) { diff[d] = embedding[i * dim + d] - embedding[j * dim + d]; grad_i[d] += probability * diff[d]; } } } // 释放内存 delete tree; delete[] position; } // 计算t-SNE中的梯度和KL散度(Barnes-Hut加速版,多线程) void compute_gradient_kl_bh_multithreaded(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity, double theta) { const int num_threads = 4; const double eps = 1e-12; memset(grad, 0, n * dim * sizeof(double)); // 创建Barnes-Hut树 double* position = new double[n * dim]; memcpy(position, embedding, n * dim * sizeof(double)); BarnesHutTree* tree = new BarnesHutTree(position, n, dim); tree->build(theta); // 计算梯度和KL散度 #pragma omp parallel for num_threads(num_threads) for (int i = 0; i < n; i++) { double* grad_i = grad + i * dim; for (int j = 0; j < n; j++) { if (i == j) { continue; } double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim); double probability = P[i * n + j]; probability /= (eps + P[j * n + i] + probability); if (distance_squared > eps && tree->is_far_away(i, j, distance_squared)) { probability *= 0; } else { probability *= gaussian_kernel(distance_squared, perplexity); } probability -= (eps + tree->get_probability(i, j)); double diff[dim]; for (int d = 0; d < dim; d++) { diff[d] = embedding[i * dim + d] - embedding[j * dim + d]; grad_i[d] += probability * diff[d]; } } } // 释放内存 delete tree; delete[] position; } // 随机梯度下降优化t-SNE void optimize_t_sne(double* embedding, const double* X, int n, int dim, double perplexity, int max_iter, double learning_rate, double momentum, bool use_bh, double theta, bool use_multithreaded) { const int num_threads = 4; // 初始化低维嵌入 initialize_embedding(embedding, n, dim); // 计算P矩阵,即高维空间点之间的相似度矩阵 double* P = new double[n * n]; memset(P, 0, n * n * sizeof(double)); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { double distance_squared = euclidean_distance_squared(X + i * dim, X + j * dim, dim); double probability = gaussian_kernel(distance_squared, perplexity); P[i * n + j] = probability; P[j * n + i] = probability; } } // 对称化P矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { P[i * n + j] = (P[i * n + j] + P[j * n + i]) / (2 * n); } } // 随机梯度下降优化低维嵌入 double* prev_grad = new double[n * dim]; memset(prev_grad, 0, n * dim * sizeof(double)); double* grad = new double[n * dim]; memset(grad, 0, n * dim * sizeof(double)); for (int iter = 0; iter < max_iter; iter++) { if (use_bh) { if (use_multithreaded) { compute_gradient_kl_bh_multithreaded(embedding, P, grad, n, dim, perplexity, theta); } else { compute_gradient_kl_bh(embedding, P, grad, n, dim, perplexity, theta); } } else { compute_gradient_kl(embedding, P, grad, n, dim, perplexity); } for (int i = 0; i < n * dim; i++) { double update = momentum * prev_grad[i] - learning_rate * grad[i]; embedding[i] += update; prev_grad[i] = update; } } // 释放内存 delete[] P; delete[] grad; delete[] prev_grad; } ``` 上面的代码实现了t-SNE的基本功能,包括计算高斯核函数、随机初始化低维嵌入、计算梯度和KL散度、随机梯度下降优化低维嵌入等操作。其中,compute_gradient_kl_bh函数实现了Barnes-Hut加速,compute_gradient_kl_bh_multithreaded函数实现了多线程计算梯度。如果需要进一步优化性能,可以通过调整参数、使用GPU加速等方式进行优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值