随机投影(Random Projection)降维方法

随机投影(Random Projection)是一种简单且计算效率高的降维方法,与PCA相比,它只需构建投影矩阵,无需进行SVD,适用于依赖距离信息的算法如k-means。其理论基础是J-L Lemma,保证了高维空间中点集映射到低维空间后的相对距离得以保持。sklearn.random_projection模块提供了高斯和稀疏随机矩阵的实现,用于控制数据的准确率和降低模型大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Random Projection是一种降维方法。相对普遍的PCA的降维方法,这里介绍另一种降维方法Random Projecttion。相比于PCA,他的优势可以这样说:

Random Projection与PCA不一样,其操作简单,只要构建一个投影矩阵即可,而PCA降维还要做SVD,计算开销比较大。

 

 

sklearn.random_projection.GaussianRandomProjection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值