Random Projection 随机投影法


Hercht-Neilseon:
简单的说就是当一个随机矩阵维数到达一定程度的时候,其转置和自身正交。

J-L引理:
-
在高维空间中的点可以被线性地嵌入到低维空间中,而且这些点在低维空间里两点之间距离会基本保留。
-
可以根据数据集的大小 n n n 和可容忍的错误率来设计低维的维数,上述举例为:
log ( n ) / ε 2 = log 1000 / 0.001 = 6.9078 × 1000 ≃ 690 \log(n)/\varepsilon ^2 = \log{1000}/0.001 = 6.9078\times1000\simeq{690} log(n)/ε2=log1000/0.001=6.9078×1000≃690 即可以将高维1000维的数据降低到690维左右,错误率是10%
通过使用一个高维高斯随机矩阵 R i , j R_ {i,j} Ri,j 来进行对矩阵 X n × m X_ {n\times m} Xn×m 的降维,其中 1 p \frac{1}{\sqrt{p}} p1是为了抵消降维对两点之间距离的影响,降维后两点距离会变得更近,所以需要抵消这种影响,参数 p p p是低维维数。