R假设检验之Breusch-Pagan检验(Breusch-Pagan Test)

Breusch-Pagan检验用于检测回归分析中的异方差性。通过在mtcars数据集上拟合模型并使用lmtest包的bptest函数,得到检验统计量4.0861和P值0.1296。由于P值大于0.05,无法拒绝零假设,即没有足够证据表明存在异方差。若检验显示异方差,可通过转换响应变量或加权回归来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

异方差Breusch-Pagan检验是一种用于检验回归模型中误差项的异方差性的检验方法。在回归分析中,如果误差项具有异方差性,即误差项的方差不是恒定的,那么OLS估计量就不再是最优的,此时需要进行异方差性检验并采取相应的处理方法。 Breusch-Pagan检验的基本思想是检验误差项的方差是否与自变量之间的关系有关。如果方差与自变量之间存在显著的关系,则说明误差项存在异方差性。具体地,假设回归模型为: y_i = β_0 + β_1*x_i1 + ... + β_k*x_ik + ε_i 其中,ε_i为误差项,如果假设误差项的方差为 σ^2,则有: Var(ε_i) = σ^2 Breusch-Pagan检验的原假设为误差项的方差是恒定的,即: H_0: σ^2 = constant 备择假设为误差项的方差与自变量之间存在关系,即: H_1: σ^2 != constant Breusch-Pagan检验的统计量为LM统计量,计算方法如下: LM = n*R^2 其中,n为样本容量,R^2为一个辅助回归模型的R-squared值,该辅助模型为ε_i^2 = δ_0 + δ_1*x_i1 + ... + δ_k*x_ik + v_i,其中v_i为误差项,δ_0为常数项,δ_1到δ_k为回归系数。如果LM统计量的值超过了临界值,就可以拒绝原假设,认为误差项存在异方差性。 需要注意的是,Breusch-Pagan检验的结果可能受到样本容量的影响,当样本容量较小时,该检验可能会出现低功效的情况,即无法检测到存在的异方差性。因此,在进行Breusch-Pagan检验时,需要同时考虑样本容量和其他异方差性检验的结果,综合分析得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值