python实现D‘Agostino‘s K-squared test正态分布检验

本文介绍了如何使用Python进行D'Agostino's K-squared test,这是一种用于检验数据样本是否符合高斯分布的统计方法。在假设样本独立同分布的情况下,通过计算得到的统计量3.392和p值0.183,由于p值大于0.05,结论是数据服从正态分布。该测试结合了偏度和峰度的检验,是评估数据正态性的工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python实现D'Agostino's K-squared test正态分布检验

See the source image

 

测试数据样本是否具有高斯分布。

假设条件

  • 每个样本中的观察结果都是独立且均等分布的(iid)。

解释

  • H0:样本具有高斯分布。
  • H1:样本没有高斯分布。

Python代码

# Example of the D'Agostino's K^2 Normality Test
from scipy.stats import normaltest
data = [0.873, 2.817, 0.121, -0.945, -0.055, -1.436, 0.360, -1.478, -1.637, -1.869]
stat, p = normaltest(data)
print('stat=%.3f, p=%.3f' % (stat, p))
if p > 0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值