影像组学标签(radiomic signature)、影像组学评分运算公式(rad-score)

影像组学是从医学图像中提取大量特征,以预测癌症预后和治疗反应的技术。radiomic signature是经过特征选择后具有预测价值的特征集合。rad-score是通过LASSO算法得到的特征系数计算得出的评分,值越高,风险越高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

影像组学标签(radiomic signature)、影像组学评分运算公式(rad-score)

 See the source image

在医学领域,影像组学是一种利用数据特征化算法从医学图像中提取大量特征的方法。这些特征被称为影像组学特征,有可能揭示肉眼无法观察到的肿瘤模式和特征。影像组学的假设是疾病形态之间的影像学特征可能有助于预测各种癌症类型的预后和治疗反应,从而为个性化治疗提供有价值的信息。影像组学产生于影像组学和肿瘤学的医学领域,是这些领域中最先进的应用。然而,这项技术可以应用于任何可以成像病理过程的医学研究。

影像组学源于计算机辅助检测或诊断(computer-aided detection or diagnosis,CAD),是将影像定量分析与机器学习方法结合起来。目前,影像组学的基本作用是通过大量的影像组学特征对肿瘤感兴趣区进行定量分析,从而可以提供有价值的诊断、预后或预测信息。影像组学的目的是探索和利用这些信

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值