R语言leaps包中的regsubsets函数实现全集子集回归(all subsets regression)、使用调整R方和Mallows Cp统计量筛选最优模型、并可视化不同组合参数下的模型指标

本文介绍了如何使用R语言的leaps包中的regsubsets函数进行全集子集回归(ASR),通过调整R方和Mallows Cp统计量筛选最佳模型,并通过可视化工具展示不同组合的模型指标。讨论了全集子集回归相对于逐步回归的优势,以及在数据集上的应用示例,展示了如何选择最优模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言使用leaps包中的regsubsets函数实现全集子集回归(All Subsets Regression,ASR)、使用调整R方和Mallows Cp统计量筛选最佳模型、并可视化不同组合参数下的模型指标、使用leaps包的plot函数和car包的subsets函数可视化不同组合下的最佳模型

目录

R语言使用leaps包中的regsubsets函数实现全集子集回归(All Subsets Regression,ASR)、使用调整R方和Mallows Cp统计量筛选最佳模型、并可视化不同组合参数下的模型指标、使用leaps包的plot函数和car包的subsets函数可视化不同组合下的最佳模型

 #仿真数据1

#仿真数据2

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值