考研线性代数深入理解

文章目的

考研过程中觉得考研辅导教材丝毫没有给线代一个直观的理解, 只是让你计算, 然而很多题目, 定理, 公式, 如果没有直观的理解, 就需要你强行记住定理, 以及现场推导。 这严重影响了我做题的速度。

因此在参考B站线性代数的本质的基础上, 讲线代的直观理解应用到考研范围的题目上来, 赐你屠龙刀

特征向量之前的向量组是自己兴起手推总结的, 一不小心就写了很多,虽然字很丑。

特征向量是发现效果不错, 所以打了Markdown版本的

阅前注意

  1. 你必须知道向量、矩阵、向量组、基、基础解析、极大无关组、解方程组、矩阵乘法、坐标变换、基变换, 等线性代数的基本概念
  2. 本文第一页, 总结了向量, 矩阵,基的理解, 这是后面一切推理的基石。如果你不能够看懂, 推荐你花2-3h观看视频线性代数的本质
  3. 第二点非常重要, 这是一切直观理解的必要前提

向量、矩阵、基、极大无关组、Span

重要前提:

我们研究的线性代数, 都有一个默认基,也就是直角坐标系 E E E, 以下会称其为标准基,简称标基。

向量符号不会给出箭头, 大写字母均代表矩阵 ,小写字母代表向量, 或者是数乘的时候的实数(或者说一维的矩阵), [ x 1 , x 2 , . . . x n ] [x_1,x_2,...x_n] [x1,x2,...xn]这样描述的时候, 自行理解这是向量 x x x的每个分量, 还是一个矩阵 X X X的列向量/行向量组

向量

向量在数学上是一组数, 物理上是矢量,计算机里是一个数组,

在几何空间中可以表示坐标。

考研中,如果和基结合来看, 就是基向量的线性组合, 放到基空间里, 就是基空间里的一个向量, 或者说一个坐标点

注:线性组合就是对应相乘再相加

看下面的等式
A x = [ a 1 , a 2 , . . , a n ] x = [ a 1 , a 2 , . . , a n ] [ x 1 , x 2 , . . . , x n ] T = x 1 a 1 + x 2 a 2 + . . . + x n a n = y {Ax = [a_1,a_2,..,a_n]x = [a_1,a_2,..,a_n][x_1,x_2,...,x_n]^T }\\ {= x_1a_1+x_2a_2+...+x_na_n = y } Ax=[a1,a2,..,an]x=[a1,a2,..,an][x1,x2,...,xn]T=x1a1+x2a2+...+xnan=y

一行4个=, 5个表达, 是完全等价的,

矩阵乘向量(变换) = 基空间A的x向量 = [基向量]*的线性组合 = y(标系下的向量、坐标、线性组合)

你理解到什么程度就可以了呢?,你看到下面这个式子能想到上面的任何一个就过关了

x 1 a 1 + x 2 a 2 + . . . + x n a n {x_1a_1+x_2a_2+...+x_na_n} x1a1+x2a2+...+xnan

这不是相乘相加

这是基向量的线性组合, 是两个向量内积(一维空间直线上的点), 或者说高维空间中的一个点。

并且在脑海里能大致想到这个空间, 和点即可

矩阵

矩阵是一组向量,和向量一样定义的, 分块后就没区别, 也叫二维张量

矩阵在考研里有两个角色。 一是变换,二是向量组

在做矩阵乘法的时候, 矩阵就可以看成变换

A x = b 这 里 的 A 就 是 变 换 Ax=b 这里的A就是变换 Ax=bA

当然也可以看成向量组

A = [ a 1 , a 2 , . . , a n ] A=[a_1,a_2,..,a_n] A=[a1,a2,..,an]

矩阵乘法的含义,方程组解与函数的解

A x = b Ax=b Ax=b

你可以看成时,将x做A变换,变成了b

也可以看成是,A空间中的x就是标空间中的b

如果你把x看成一个变量(实际上是一组变量)的话,不同的x产生不同的Ax(线性组合), 也就描述了整个A空间的任何一个向量, A x = b Ax=b Ax=b就是找到A空间中对应b的那个线性组合

更数学一点,你把x看成是自变量,Ax看成是自变量的函数, 变成了F(X) = b,就是解了

不过我们线代的函数是线性函数(线性变换),自变量,因变量也都是向量或者矩阵。

解当然也是向量, 通解就是整个解空间

向量组与空间、矩阵与方程组

假设 A n ∗ m A_{n*m} Anm

行满秩,行向量全都线性无关, 从列的角度来看, 就是所有列向量张成了n维空间。

可以保证 A x = b Ax=b Ax=b有解

列满秩, 列向量组全都线性无关,列向量是一个极大无关组。假高维,实际只张成了m维空间

不能保证 A x = b Ax = b Ax=b有解

唯一解就是,b和Ax相同维度, 有唯一表示(直线在平面上)

无解就是, 目标b维度高了, Ax表示不了(直线不在平面上)

无穷解就是Ax维度高, 有一个零空间可以表示b(一族向量,投影到数轴上的同一个点,或者说一族平面, 投影到平面上的一条线)

向量、矩阵、变换、线性空间、向量组的相关性,线性方程组的解空间合集(手写版字很丑,)

向量

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

坐标变换和基变换

向量

以前说了向量是一组数, 可以看成是在基下坐标 ,也基向量线性组合

坐标变换

注:坐标就是向量,变换就是矩阵乘法

A x = y Ax=y Ax=y

x x x A A A的一个线性组合计算出来的结果就是在标准坐标系中的表述 y y y

注: A A A的基(所有列向量)是在标准坐标系下描述的。更宽泛的来说, 任何我们写的向量和矩阵都是默认在标系下表述的

所以他们的**线性组合** A x Ax Ax 也是标系的一个向量 y y y

而矩阵乘法 A X = B AX=B AX=B不过是

A [ x 1 , x 2 , . . . x n ] = [ b 1 , b 2 , . . . b n ] A[x_1,x_2,...x_n]=[b_1,b_2,...b_n] A[x1,x2,...xn]=[b1,b2,...bn]

the transformation A x i = b i Ax_i=b_i Axi=bi be applied by n times

注:我今后将任何标准坐标系下的向量或者矩阵, 都叫做标述, 标准坐标系叫做标系

坐标变换做的事可以从坐标变换和基变换的角度来理解

  1. 坐标变换

    x x x施加 A A A变换

  2. 基变换

    在基变换 A A A的情况下 x x x表示的向量(线性组合)在标系下的表述 y y y

注:基可以对于向量来说可以理解成语言, 向量是描述, A语言下x的描述, 在标准语言下是y

比如一个单词shabby, 你读起来会误以为它是shabi的意思, 但是经过A语言翻译到中文, 这就是破旧的意思。

那反过来, 要把一个标准表述变成基A表述只要做逆变换即可

x = A − 1 y x=A^{-1}y x=A1y

基变换

如何对基 A A A下的坐标作一个在标系下表示的变换

maybe above sentence can easily be understood by reading following words “make a vector in basis A be applied a transform that in basis standard”

因为我们默认任何矩阵和向量都是标系下的, 所以你如果不变基的话是不能做到对**基A下的坐标施加同一变换**的。

注:同一变换比如逆时针旋转90’在不同坐标系下是不一样的(至少大多数情况下是不一样的),这也就是相似对角化其实就是为了做这种事。

我截取了视频中最重要的部分内容描述基变换
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述这样基变换的目的就很明显了

首先我们的矩阵和向量都是在标系下的,因此, 你的变换矩阵transformation is also in standard basis。

而我想要知道的是相同的变换在基A下, 用我们的语言描述(标系下表示)是什么样的

注:区分变换 C C C A − 1 C A A^{-1}CA A1CA.

实际上, 上述例子的本质是把一个基先变换成标系(直角坐标系)再作变换,再变回原来的基下。这样比直接找到一个 D = A − 1 C A D=A^{-1}CA D=A1CA 更加的容易

注:怎么理解直角坐标系, 相互正交,而一般对角矩阵正是这样的。

特征值和特征向量

特征向量

首先应该讨论特征向量。特征值只是一个副产品而已,因为线代讨论的主体是向量而非实数

特征向量是一个矩阵(变换)施加在上面时, 只会改变大小的向量,改变的大小 λ \lambda λ

注:你可以把特征换成伸缩, 伸缩向量, 伸缩值

为了求特征向量

A α = λ α A\alpha = \lambda \alpha Aα=λα

A α = λ E α A\alpha = \lambda E \alpha Aα=λEα

( A − λ E ) α = 0 → (A-\lambda E) \alpha = \overrightarrow0 (AλE)α=0

变成了解线性方程组, 或者说找零空间

∣ A − λ E ∣ |A-\lambda E| AλE会是一个特征多项式, ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0是一个特征方程

特征方程的根三种情况

  • 无根(考研不考虑)

  • 单根(该特征值解的零空间至少1维,至多1维)

  • k重根(该特征值解的零空间至少1维,之多k维)

对应 λ i \lambda_i λi零空间里的所有向量 α i j \alpha_{ij} αij

A α i j = λ i α i j A\alpha_{ij} = \lambda_i \alpha_{ij} Aαij=λiαij

零空间可以用基向量(=基础解系,=极大线性无关组,后都说成基础解系)来表述

注:

一个前提:考研大题只讨论实对称阵, 二次型矩阵都能表示实对称阵, 实对称阵一定可以相似对角化, 同样一定可以正交化

一个结论:不同特征值对应的特征向量一定线性无关,也即基础解系增广的向量组线性无关。

显然如果所有的基础解系得到的向量组有n个线性无关的特征向量的话。

将这个向量组成为 ∣ P ∣ ≠ 0 , P = [ α 1 , α 2 , . . . , α n ] |P|\ne0,P = [\alpha_1,\alpha_2,...,\alpha_n] P=0,P=[α1,α2,...,αn] 称之为特征基(伸缩基)

A α 1 = λ α 1 = [ α 1 , α 2 , . . . , α n ] [ λ 1 , 0 , 0 , . . . , 0 ] T = P [ λ 1 , 0 , 0 , . . . , 0 ] T A\alpha_1 = \lambda \alpha_1 = [\alpha_1,\alpha_2,...,\alpha_n][\lambda_1,0,0,...,0]^T = P[\lambda_1,0,0,...,0]^T Aα1=λα1=[α1,α2,...,αn][λ1,0,0,...,0]T=P[λ1,0,0,...,0]T

对于P有 $AP = P \Lambda , $

注:注意时右乘对角阵(Ax)这里的x也是右乘的。

由于P可逆, A = P Λ P − 1 A =P\Lambda P^{-1} A=PΛP1

对应的 $P^{-1}AP =\Lambda $

注:下面的考研这样理解就慢了,

直接记上面的

“P逆AP“

”P lambda P逆“

特征基下的A变换, 就是标基的对角变换

也就是如果你要做标基的 A n A^n An, 你可以考虑先做 P − 1 P^{-1} P1的基变换,

然后施加 Λ n \Lambda ^ n Λn变换, 再 P P P回来

特殊变换的特征值与特征向量
B矩阵 A A A k A + b E kA+bE kA+bE A n A^{n} An A − 1 A^{-1 } A1 A ∗ A ^{* } A B = P − 1 A P B=P^{-1}AP B=P1AP
特征值 λ \lambda λ k λ + b k\lambda+b kλ+b λ n \lambda^n λn λ − 1 \lambda^{-1} λ1$A
特征向量 α \alpha α α \alpha α α \alpha α α \alpha α α \alpha α P − 1 α P^{-1}\alpha P1α

首先逆把 A = P Λ P − 1 A =P\Lambda P^{-1} A=PΛP1带入B中, 根据定义能现场退出来

直观理解上表

因为特征向量是伸缩向量, 伸缩大小改变不改变向量的方向

  1. k倍的伸缩是不改变特征向量的, 所以线性变换只改变了特征值

  2. 你伸缩n次就是n次方倍

  3. 你逆着伸缩,就是倒数倍

  4. 对于方阵 A ∗ = ∣ A ∣ A − 1 A^* =|A|A^{-1} A=AA1

  5. B相似, 特征多项式相同, 特征向量单独推

关于相似的秩问题

首先你要分清楚, 你研究的矩阵是 A A A还是 P P P

∣ A ∣ = 0 |A|=0 A=0只能说存在特征值0,这就可以结合前面 A x = 0 Ax=0 Ax=0来解决问题了

∣ P ∣ = 0 |P| = 0 P=0的话说明有k重根的基向量<k,也就是维度不够, 也就不能对角化

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值