tensorflow tf.one_hot() 实例

tensorflow中tf.one_hot()函数的作用是将一个值化为一个概率分布的向量,一般用于分类问题。

具体用法以及作用见以下代码:

[python]  view plain  copy
  1. import numpy as np  
  2. import tensorflow as tf  
  3.   
  4. SIZE=6  
  5. CLASS=8  
  6. label1=tf.constant([0,1,2,3,4,5,6,7])  
  7. sess1=tf.Session()  
  8. print('label1:',sess1.run(label1))  
  9. b = tf.one_hot(label1,CLASS,3,0)  
  10. with tf.Session() as sess:  
  11.     sess.run(tf.global_variables_initializer())  
  12.     sess.run(b)  
  13.     print('after one_hot',sess.run(b))  
最后的输出为:

label1: [0 1 2 3 4 5 6 7]
after one_hot:

 [[3 0 0 0 0 0 0 0]
 [0 3 0 0 0 0 0 0]
 [0 0 3 0 0 0 0 0]
 [0 0 0 3 0 0 0 0]
 [0 0 0 0 3 0 0 0]
 [0 0 0 0 0 3 0 0]
 [0 0 0 0 0 0 3 0]
 [0 0 0 0 0 0 0 3]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值