tensorflow2.0相关函数-------- 实现独热编码(One-Hot)

本文介绍了如何在TensorFlow 2.0中使用to_categorical和tf.one_hot函数进行独热编码。to_categorical函数将整型标签转换为one-hot矩阵,而tf.one_hot则将标签编码为TensorFlow的tensor。内容包括函数的声明、作用及使用示例,强调编码时编号从0开始,并提到了TensorFlow与Keras的集成。
摘要由CSDN通过智能技术生成

to_categorical实现独热编码

函数声明: to_categorical(y, num_classes=None, dtype=‘float32’)

作用:将整型标签转为onehot。y为int数组,num_classes为标签类别总数,大于max(y)(标签从0开始的)。

返回:如果num_classes=None,返回len(y) * [max(y)+1](维度,m*n表示m行n列矩阵,下同),否则为len(y) * num_classes。

import tensorflow as tf

oh1=tf.keras.utils.to_categorical([1,3])
# oh1=keras.utils.to_categorical([[1],[3]])
print(oh1)
"""
[[0. 1. 0. 0.]
 [0. 0. 0. 1.]]
"""
oh2=tf.keras.utils.to_categorical([1,3],num_classes=5)
print(oh2)
"""
[[0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0.]]
"""

num_classes默认为以数组里面最大的为编码依据,也可以指定编码依据,比如num_classes = 10。
简而言之,就是将给定的序列,编码成一个one -hot矩阵。注意编号是从0开始的。
因为tensorflow已经集成了keras,所以可以直接tf.keras使用该函数。

这种实现的独热编码是一个数组,下面通过tf.one

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值