云计算有IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)、DaaS(数据即服务)的概念,如今在欧洲诞生了一个叫MaaS的理念,翻译过来译为出行即服务。
MaaS介绍
先看看今天的出行方式,我们现在有网约车,有共享单车,公交地铁。想去某个地方,打开手机地图,输入目的地,各种路线就规划出来了,有自驾、有公共交通。眼下这些方式,有时候给人的出行体验并不是很好,比如跟朋友有约,但目的地距离较远,又是晚高峰,准时到就不能打车,容易堵在路上,选择公共交通又要换乘好几次,可能就不能准时赴约。为了赶时间,可能需要在不同的App之间切换。
如果各类交通资源都能得到高效利用,不同的交通工具做到无缝的衔接,就能减少人等待、切换的时间,让日常出行体验更加顺滑。届时只需要提出自己的需求,所有的交通工具都围绕着你的需求去运转,一站式为你解决所有出行问题,这样的体验是不是很好?围绕这一实现,一种实现的可能性就是MaaS(Mobility as a Service)模式。
简单来说,MaaS就是一种出行服务的模式,呈现出来的就是一个平台,一个可供所有人使用的应用系统。一个城市的MaaS平台,会把城市里所有类型的交通工具都整合起来,数据共享,统一调度,统一支付,统一管理。
MaaS之所以能规划一站式出行方案,是因为它整合了很多交通工具,掌握了整个城市交通的实时运行数据,这些数据包括公交实时的线路情况、地铁闸机的刷卡次数、道路的拥挤情况、写字楼的人流量、共享单车的分布情况等等。
可能有人会觉得实现这些,做个App不就够了。不管你出门是要坐地铁、公交,还是骑共享单车,还是三种都用,打开一个App,买一张票,不很容易实现吗?但是懂互联网的都知道,要打通各个平台,实现平台之间数据共享,并不是件容易的事情。你想啊,公共交通是政府提供的基础公共服务,共享单车、网约车,背后是商业化运营的企业。更别说公共交通还各式各样,分别属于不同部门;一个稍大点儿的城市,共享单车、网约车也有好多家企业在做,要把这些都打通,难度可想而知。打通都是问题,各个平台之间数据资源还要开放共享,就更难了。
国内一些城市,已经在尝试落地MaaS模式了,比如广州市政府主导成立的“车城网科技”,算是国内“智能交通运营商”的雏形。现阶段,车城网运营的MaaS平台,已经打通了百度的自动驾驶运营车队萝卜快跑,并且逐步接入广州市的公交、轻轨,还有部分企业的共享单车。除了广州,北京、上海等城市也都在积极行动。
自动驾驶的普及也会大大加速共享化出行的发展。根据世界经济论坛的预测,到2040年,53%的自动驾驶汽车将实现共享。共享无人车,将会成为城市的主要交通方式。到那个时候,城市的MaaS模式探索,也会走到一个相对成熟的阶段。
MaaS的必要性
在中国,交通领域的碳排放,占全国碳排放总量的9%,其中道路交通,在交通运输业整体碳排放当中占比高达84%。我国要实现2030年碳达峰,2060年碳中和的目标,交通不得不进行一场“绿色革命”。
交通是经济的脉络,文明的纽带,是既关乎经济又关乎民生的一个大问题。智能交通有四大关键参与方:人、车、路和环境。智能汽车只是智能交通里的一个关键参与方。智能交通是智能城市的重要组成部分,智能城市又是智能社会中的一个重要元素。
自动驾驶
未来10-40年,自动驾驶汽车将是智能交通的关键变量,它将为解决交通安全问题提供新思路和新方案。这里说明一下,自动驾驶既包括辅助驾驶(Lv1),也包括人类完全交出方向盘的高级别自动驾驶(Lv5)。
自动驾驶汽车可以先跑起来,在实际运营的过程中不断积累数据,扩大服务范围,逐步实现高级别自动驾驶的普及。车路协同自动驾驶场景下,路端能够将更准确的路况数据传给汽车,使自动驾驶更加安全,成本降低,加速商业化落地。
自动驾驶的车全身遍布敏锐的传感器、雷达、摄像头等等,感知上要比人类强很多,能看到人眼看不到的死角,决策速度也比人类快了许多倍。在操作执行上,机器也比人类稳定。人会疲劳,会情绪化,会危险驾驶,而机器不会。大家会认为,缓解拥堵,就是要建更多的路。这其实是不现实的,也不经济。从软件、运营层面提升通行的效率,它的实施成本和实施难度,远远低于道路扩建。因为道路建设的成本非常高,周期也非常长。事实上,解决交通拥堵问题,就可以节约能源,减少空气污染,帮助实现碳达峰和碳中和。有数据显示,拥堵、停车效率低等交通问题,会让全国每年的碳排放量增加74万吨。大力发展车路协同和自动驾驶,建设低碳的智能出行服务体系等,可以让我们的城市更绿色。
交通这样一个复杂系统,在往智能化升级方向前进的时候,既离不开政策、产业、市场需求等方方面面的支持,同时也需要解决成本、数据安全、隐私伦理等各种各样的新问题。简单讲,就是车、路、人、环境之间,能够做到实时动态的交互联动。立足长远是说,车路协同能够解决未来自动驾驶普及的难题;兼容当下指的是,车路协同还可以解决当下存在的一些交通难题。鬼探头、团雾,都是交通安全方面的大难题,车路协同可以很好地解决它们。除此之外,车路协同在提升交通效率方面,也能发挥很大的作用。目前在自动驾驶方面,有两条主要的技术路线,一个是单车智能,另一个就是车路协同。
车路协同
车路协同,简单讲,它比单车智能多了路端的感知、决策系统,多了车、路、人之间的交互联动。自动驾驶有两条主要的技术路线,单车智能和车路协同。相比单车智能,车路协同具备更安全、成本低、加快自动驾驶的商业化落地三大优势。车路协同也是一个兼容当下的技术方案,可以解决鬼探头、高速公路团雾等交通安全难题。车路协同的发展需要克服成本和数据安全问题。智能交通运营商是保障城市交通数据安全的一种新设想。
车路协同一方面可以复用原先的旧设备,另一方面,它主要通过优化算法的方式来让系统更智能,这样可以节省成本。
智能交通时代的地图
智能交通时代,地图不只要为人类司机服务,也要为自动驾驶汽车服务。这种情况下,地图对客观世界的映射必须越来越精细、越来越及时,要实现厘米级精度和分钟级更新。未来地图就像智能交通的末梢神经,能时刻帮助城市管理者感知交通的脉搏,从而推进交通系统的全局优化。
地图如果要为自动驾驶服务,就不能像传统地图一样,只提供道路级导航信息,它还得精确到每一条车道上,也就是提供车道级别导航信息。这就要用到“高精地图”。
高精地图的精准度,至少体现在两个方面:首先是在标记地图要素的位置时,精度要更高。地图要素,也就是出现在地图中的各种东西,比如道路、信号灯等。普通地图标记要素的位置,精度在10米上下。而高精地图的精度要达到分米,甚至厘米级。
假如你开车找一个充电桩,用普通地图导航,它告诉你目的地到了,但充电桩还在离你十米远的地方。但如果是用高精地图,导航结束时,你停车的地方,正好就是在这个充电桩面前。
其次是采集的数据维度要更全。普通地图采集的主要是道路的数据,比如路的名字、方向、电子眼的位置等。跟普通地图相比,高精地图多了车道、防护栏、路灯、马路牙子等不同对象的数据。
智能交通时代,地图不只要为人类司机服务,也要为自动驾驶汽车服务,所以地图对客观世界的映射必须越来越精细、越来越及时。
在这样的时代背景下,数据尤其是大数据变得越来越重要,越来越有价值。
自动驾驶等级划分
自动驾驶L0~Lv5
无自动驾驶(Level-0), 由人类驾驶者全时操作汽车,在行驶过程中可以得到警告和保护系统的辅助。目前没有辅助驾驶的车辆,认为是Level-0,Level-0车辆可能包含一些主动安全装置。
驾驶支援(Level-1), 通过驾驶环境信息对方向盘和加减速中的一项操作提供驾驶支援,其他的驾驶操作由人类驾驶者完成。目前辅助驾驶技术如车道保持、定速巡航、ACC自适应巡航和ESP等,中高级轿车这已经是标配了,但是辅助驾驶技术总体舒适性还存在差异。
部分自动化(Level-2), 通过驾驶环境信息对方向盘和加减速中的多项操作提供驾驶支援,其他的驾驶操作由人类驾驶者完成。Level2的系统仅能处理少数高频通用驾驶场景,超出能力自动驾驶系统将控制权交给人类驾驶员,人类驾驶员需要实时监控并做好接管车辆的准备。Level-2和Level-1最明显的区别是系统能否同时在车辆横向和纵向上进行控制。
有条件自动化(Level-3), 通过驾驶环境信息对方向盘和加减速中的多项操作提供驾驶支援,其他的驾驶操作由人类驾驶者完成。有条件自动驾驶是指在某些特定场景下(高速公路/道路拥塞等)进行自动驾驶,人类驾驶员还是需要监控驾驶活动。
高度自动化(Level-4), 由无人驾驶系统完成全时驾驶操作,根据系统请求,人类驾驶者不一定需要对所有的系统请求做出应答,限定道路和环境条件。Level-4的自动驾驶算法准确性和精确性需要达到,甚至超过人类的认知水平,这就需要的是极具鲁棒性的算法和稳定的计算平台。目前自动驾驶使用的高精度传感器(激光雷达等)和自动驾驶控制芯片价格极其昂贵,离普及还有相当的距离。
完全自动驾驶(Level-5), 可无人驾驶车辆、允许车内所有乘员从事其他活动且无需进行监控的系统。这种自动化水平允许乘从事计算机工作、休息和睡眠以及其他娱乐等活动。Level-4/Level-5逐渐普及之后,百年的汽车行业,将发生重大变革,我们的出行模式也将巨变。