机器学习资料

凸优化:
[Springer]Convex Analysis and Nonlinear Optimization
by Borwein

Convex Optimization
By Boyd

Reinforcement Learning: An Introduction (很好):
http://incompleteideas.net/sutton/book/the-book-2nd.html
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction

Optimizing: Gradient Descent (很好):
http://sebastianruder.com/optimizing-gradient-descent/

Andrew Moore PPT (一般):
http://www.autonlab.org/tutorials

Andrew Ng机器学习新书(一般):
https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_01.pdf

Learning Structured Sparsity in Deep Neural Networks(不错):
https://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf
https://github.com/wenwei202/caffe/tree/scnn

结合ARMA的卡尔曼滤波算法 (一般):
https://uqer.io/community/share/58221fb8228e5ba8f857197f

深度增强学习方向论文整理(很好):
https://zhuanlan.zhihu.com/p/23600620

Generating additional data for unbalanced classes by jittering the original image (还行):
https://nbviewer.jupyter.org/github/vxy10/SCND_notebooks/blob/master/preprocessing_stuff/img_transform_NB.ipynb

scikit-learn 线性回归算法库小结(写的太简单):
http://www.cnblogs.com/pinard/p/6026343.html

Sparse PCA 的算法(自己写的):
http://blog.csdn.net/zhoudi2010/article/details/53489319

概率简介(真的是简介):
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值