Householder和Lanczos双对角化算法用R语言实现

本文介绍了Householder变换的基础知识,并展示了如何使用R语言实现Householder变换进行矩阵双对角化的过程。内容包括复数概念、共轭转置、Hermite矩阵、正规矩阵等数学概念,以及Householder变换的几何意义。
摘要由CSDN通过智能技术生成

基础知识


复数:z=a+bi,其中a,b是实数,i是虚数单位。

a=Re(z)称为实部,实部为零时,z为纯虚数。
b=Im(z)称为虚部,虚部b等于零时,z可以视为实数。

共轭复数:实部相等,虚部互为相反数的复数。

例如:x+yi与x-yi称为共轭复数。
共轭复数有些有趣的性质:

|x+yi|=|xyi| | x + y i | = | x − y i |
(x+yi)×(xyi)=x2+y2 ( x + y i ) × ( x − y i ) = x 2 + y 2

共轭转置:将矩阵转至再共轭,记为

以下是使用 Householder 三对角化和带 Wilkinson 位移的隐式对称 QR 算法求解对称矩阵特征值的 Matlab 代码: ```matlab function [eigenvalues, eigenvectors] = symmQR(A, tol) % A: n x n 对称矩阵 % tol: 容许误差 % eigenvalues: n x 1 特征值向量 % eigenvectors: n x n 特征向量矩阵 n = size(A, 1); eigenvalues = diag(A); % 初始化特征值向量 eigenvectors = eye(n); % 初始化特征向量矩阵 while true for i = 1:n-1 if abs(A(i+1,i)) < tol % 判断下对角线元素是否为零 continue end % 计算 Householder 变换矩阵 [v, beta] = house(A(i:i+1,i)); H = blkdiag(eye(i-1), v*v'/beta, eye(n-i-1)); % 对矩阵进行 Householder 三对角化 A = H * A * H; eigenvectors = eigenvectors * H; % 对带 Wilkinson 位移的隐式 QR 算法进行迭代 [mu, shift] = wilkinsonShift(A(n-1:n,n-1:n)); [Q, R] = qr(A - mu*eye(n)); A = R * Q + mu*eye(n); % 更新特征值向量 eigenvalues(i:i+1) = A(i:i+1,i:i+1); end % 检查是否满足停止条件 if max(abs(tril(A,-1))) < tol break end end % 对特征向量矩阵进行正交化 for i = 1:n for j = 1:i-1 eigenvectors(:,i) = eigenvectors(:,i) - (eigenvectors(:,i)'*eigenvectors(:,j)) * eigenvectors(:,j); end eigenvectors(:,i) = eigenvectors(:,i) / norm(eigenvectors(:,i)); end end function [v, beta] = house(x) % 计算 Householder 变换矩阵 sigma = norm(x); if x(1) >= 0 v1 = x(1) + sigma; else v1 = x(1) - sigma; end v = x / v1; v(1) = 1; beta = 2 / (v'*v); end function [mu, shift] = wilkinsonShift(A) % 计算带 Wilkinson 位移的隐式 QR 算法中的位移参数 d = (A(1,1) - A(2,2)) / 2; if d >= 0 mu = A(2,2) - A(2,1)^2 / (d + sqrt(d^2 + A(2,1)^2)); else mu = A(2,2) - A(2,1)^2 / (d - sqrt(d^2 + A(2,1)^2)); end shift = A(2,2) - mu; end ``` 其中 `house` 函数用于计算 Householder 变换矩阵,`wilkinsonShift` 函数用于计算带 Wilkinson 位移的隐式 QR 算法中的位移参数。函数返回特征值向量和特征向量矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值