【PyTorch】教程:torch.nn.Softshrink

Softshrink是PyTorch中的一种激活函数,用于信号降噪。该函数在输入大于λ时对输入减去λ,在输入小于-λ时对输入加上λ,否则输出为0。默认参数λ为0.5。它在图像处理和压缩感知等领域有应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.Softshrink

原型

CLASS torch.nn.Softshrink(lambd=0.5)

参数

  • lambd (float) – λ \lambda λ 为 Softshrink参数,默认为 0.5, 必须不小于0

定义

SoftShrinkage ( x ) = { x − λ , if  x > λ x + λ , if  x < − λ 0 , otherwise \text{SoftShrinkage}(x)=\begin{cases} x-\lambda, & \text{if } x > \lambda \\ x+\lambda, & \text{if } x < -\lambda \\ 0, & \text{otherwise} \end{cases} SoftShrinkage(x)= xλ,x+λ,0,if x>λif x<λotherwise

在这里插入图片描述

代码

import torch
import torch.nn as nn

m = nn.Softshrink()
input = torch.randn(4)
output = m(input)

print("input: ", input)
print("output: ", output)

# input:  tensor([ 0.9876, -2.0183, -0.7573, -1.7960])
# output:  tensor([ 0.4876, -1.5183, -0.2573, -1.2960])

【参考】

Softshrink — PyTorch 1.13 documentation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老周有AI~算法定制

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值