特征值与特征向量

本文参考《Linear Algebra and Its Applications》——David C.Lay, Steven R. Lay, Judi J.McDonald,中译本名为《线性代数及其应用》(原书第五版)中的相关章节。

一:特征值,特征向量

定义如下:

A为n*n的矩阵,x为非零向量,若存在数λ使Ax=λx有非平凡解x,则称λ为A的特征值,x称为对应于λ的特征向量。

例:设A=\begin{bmatrix} 1 & 6\\ 5 & 2 \end{bmatrix}\mu =\begin{bmatrix} 6\\ -5 \end{bmatrix}

                                           A\mu =\begin{bmatrix} 1 & 6\\ 5 & 2 \end{bmatrix}\begin{bmatrix} 6\\ -5 \end{bmatrix}=\begin{bmatrix} -24\\ 20 \end{bmatrix}=-4\begin{bmatrix} 6\\ -5 \end{bmatrix}=-4\mu

可以看到A对特征向量的作用是很简单的,它只是对特征向量进行了拉伸,而特征值表达了它拉伸的方向和大小。

Ax=\lambda x可以变为(A-\lambda I)x=0,所以A的特征向量是满足(A-\lambda I)x=0的所有非平凡解,这个解集称为A对应于\lambda的特征空间。

 

二:特征方程

由于A的特征向量是满足(A-\lambda I)x=0的所有非平凡解,所以要使(A-\lambda I)x=0有非平凡解,则A-\lambda I为可逆矩阵,则det(A-\lambda I)=0。所以称det(A-\lambda I)=0为A的特征方程。

换句话说:数\lambda是n*n矩阵A的特征值的充要条件是\lambda是特征方程det(A-\lambda I)=0的根。

 

三:相似性

若A和B是n*n的矩阵,如果存在可逆矩阵P,使得P^{-1}AP=B,称为A相似于B,由于可逆矩阵的逆也是可逆的,所以B也相似于A,所以称A和B是相似的,而把A变成B(P^{-1}AP)的变换称为相似变换。若A和B是相似的,则他们有相同的特征多项式,从而有相同的特征值(和相同的重数)

 

四:对角化

定义:若方阵A相似于对角矩阵,即存在可逆矩阵P和对角矩阵D,有A=PDP^{-1},则称A可对角化。

设P是列为v_{1},...,v_{n}的任意n*n矩阵,D是对角线元素为\lambda _{1},...,\lambda_{n}的对角矩阵,那么:

                                                AP=A\begin{bmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{bmatrix}=\begin{bmatrix} Av_{1} & Av_{2} & \cdots & Av_{n} \end{bmatrix}

                                                PD=P\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0\\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}=\begin{bmatrix} \lambda_{1}v_{1} & \lambda_{2}v_{2} & \cdots & \lambda_{n}v_{n} \end{bmatrix}

假设A可对角化且A=PDP^{-1},用P右乘等式两边,则有AP=PD:

                                                \begin{bmatrix} Av_{1} & Av_{2} & \cdots & Av_{n} \end{bmatrix}=\begin{bmatrix} \lambda_{1}v_{1} & \lambda_{2}v_{2} & \cdots & \lambda_{n}v_{n} \end{bmatrix}

                                                Av_{1}=\lambda_{1}v_{1},Av_{2}=\lambda_{2}v_{2},...,Av_{n}=\lambda_{n}v_{n}

因为P可逆,所以P的各列线性无关,所以由上式得\lambda_{1},\lambda_{2},...,\lambda_{n}是A的特征值,v_{1},v_{2},...,v_{n}是相应的特征向量。

所以,总行所述,A=PDP^{-1},D为对角矩阵的充要条件是P的列向量是A的n个线性无关的特征向量,此时,D的主对角线上的元素分别是A对应于P中特征向量的特征值。

  • 11
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫虫(——)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值