第三周 浅层神经网络
目录
3.1神经网络概览
注:上标方括号表示不同的层 上标圆括号表示不同的样本
3.2神经网络表示(图形的意义)
3.3计算神经网络的输出
单个训练样本:
?
3.4多个例子中的向量化
3.5向量化实现的解释
3.6激活函数
g可能是线性的也可能是非线性的
tanh 有数据中心化的作用 但是二元分类时用segema Function的另一个特殊作用是用于输出层 使 y^保持在 0~1
但这两种Function都有一种特点 当 z 很大或者 负很多时 斜率很小会降低梯度下降的速度
ReLU(带泄露的线性修正单元) max(0.01z,z)
ReLU(线性修正函数单元) 在原点可以赋值导数 学习速度很快
隐藏层数 激励函数的热门选择 冷门选择 只有尝试
3.7为什么需要非线性激活函数
3.8激活函数的导数
3.9神经网络的梯度下降法
3.10直观理解反向传播
就是链式求导法则
目的:是计算导数进行梯度下降法
3.11随机初始化
输入特征少时 隐藏单元太多也不好 很多都在计算相同的东西