随机森林

一、随机森林算法介绍 
1、选择模型的数目m(即简单决策树的个数);
2、对i=1到m执行 
3、从原始数据中生成一个bootstrap样本
4、在该样本上生成一个数模型
5、对每个分裂点执行 
6、随机抽取k(<P(原始数据解释变量的个数))个预测变量
7、在这k个解释变量中选择能用于划分数据的最优变量
8、终止 
9、使用通常的终止树模型的规则绝定何时让树停止生长(不要修建) 
终止随机森林算法的调优参数:
1、随机选择随机变量的数目k 
2、模型数目m的取值
随机森林算法的优点:树之间不相关
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值