一、随机森林算法介绍
1、选择模型的数目m(即简单决策树的个数);
2、对i=1到m执行
3、从原始数据中生成一个bootstrap样本
4、在该样本上生成一个数模型
5、对每个分裂点执行
6、随机抽取k(<P(原始数据解释变量的个数))个预测变量
7、在这k个解释变量中选择能用于划分数据的最优变量
8、终止
9、使用通常的终止树模型的规则绝定何时让树停止生长(不要修建)
终止随机森林算法的调优参数:
1、随机选择随机变量的数目k
2、模型数目m的取值
随机森林算法的优点:树之间不相关