沃尔什变换

沃尔什函数(集)

拉德梅克(符号)函数

拉德没课函数是定义在 0 到 1 上,满足正交性质的一族奇函数。 拉德没课函数是定义在0到1上,满足正交性质的一族奇函数。 拉德没课函数是定义在01上,满足正交性质的一族奇函数。
在这里插入图片描述
奇函数乘以奇函数等于偶函数, 由于正交性质,同一个函数只能用 0 或 1 次( 模二加 ) 加上组合得到的部分,得到沃尔什函数 ( 集 ) , 二进制码和格雷码一一对应 ( 单射 + 满射 ) ,所以只是表示不同而已 \color{blue}奇函数乘以奇函数等于偶函数,\\ 由于正交性质,同一个函数只能用0或1次({\color{red}模二加})\\ 加上组合得到的部分,得到沃尔什函数(集),\\ 二进制码和格雷码一一对应(单射+满射),所以只是表示不同而已 奇函数乘以奇函数等于偶函数,由于正交性质,同一个函数只能用01次(模二加加上组合得到的部分,得到沃尔什函数()二进制码和格雷码一一对应(单射+满射),所以只是表示不同而已

沃尔什函数(集)

在这里插入图片描述
沃尔什函数 ( 集 ) 的性质 沃尔什函数(集)的性质 沃尔什函数()的性质
1. 沃尔什函数集构成群 1.沃尔什函数集构成群 1.沃尔什函数集构成群
群乘法: W w ( i , t ) ∗ W w ( j , t ) 群乘法:W_w(i,t)*W_w(j,t) 群乘法:Ww(i,t)Ww(j,t)

封闭性 : W w ( i , t ) W w ( j , t ) = W w ( i ⊕ j , t ) 其实根据拉德梅克 ( 符号 ) 函数的正交性质可得,由此组成的沃尔什函数集合对于乘法是满足封闭的。 至于用 i 组合得到的沃尔什函数,与 j 组合得到的沃尔什函数相乘得到哪个沃尔什函数, 只需要 i 和 j 的对应位置进行相乘即可。 由于正交性, ( R ( 3 , t ) ) 1 × ( R ( 3 , t ) ) 1 = 恒为 1 = ( R ( 3 , t ) ) 0 , 所以定义了模二加法 1 ⊕ 1 = 0 ( 由此也有了归一化正交性 ) {\color{blue}封闭性}:W_w(i,t)W_w(j,t)=W_w(i\oplus j,t)\\ 其实根据拉德梅克(符号)函数的正交性质可得,由此组成的沃尔什函数集合对于乘法 是满足封闭的。\\ 至于用i组合得到的沃尔什函数,与j组合得到的沃尔什函数相乘得到哪个沃尔什函数,\\ 只需要i和j的对应位置进行相乘即可。\\ 由于正交性,(R(3,t))^1×(R(3,t))^1=恒为1=(R(3,t))^0,\\ 所以定义了模二加法1\oplus 1=0 ({\tiny 由此也有了归一化正交性}) 封闭性Ww(i,t)Ww(j,t)=Ww(ij,t)其实根据拉德梅克(符号)函数的正交性质可得,由此组成的沃尔什函数集合对于乘法是满足封闭的。至于用i组合得到的沃尔什函数,与j组合得到的沃尔什函数相乘得到哪个沃尔什函数,只需要ij的对应位置进行相乘即可。由于正交性,(R(3,t))1×(R(3,t))1=恒为1=(R(3,t))0所以定义了模二加法11=0(由此也有了归一化正交性)

2. W ( 2 k i , t ) = W ( i , 2 k t ) 2.W(2^ki,t)=W(i,2^kt) 2.W(2ki,t)=W(i,2kt)
W w ( i , t ) = Π n = 0 l o g 2 N − 1   ( s g n [ s i n ( 2 n ∗ π t ) ] ) g i 的第二种表示形式 W w ( i , t ) = Π n = 0 l o g 2 N − 1   ( s g n [ c o s ( i n ∗ 2 n ∗ π t ) ] ) i n 是二进制 i 的第 n 位 W_w(i,t)=\Pi_{n=0}^{log_2N-1} \ (sgn[sin (2^n*\pi t)])^{ g^{i}}\\的第二种表示形式\\ \color{red} W_w(i,t)=\Pi_{n=0}^{log_2N-1} \ (sgn[cos (i_n*2^n*\pi t)]) \\ i_n是二进制i的第n位 Ww(i,t)=Πn=0log2N1 (sgn[sin(2nπt)])gi的第二种表示形式Ww(i,t)=Πn=0log2N1 (sgn[cos(in2nπt)])in是二进制i的第n
根据以上定义 W w ( 2 k i , t ) = Π k = 0 l o g 2 N − 1   ( s g n [ c o s ( i k 2 n + k ∗ π t ) ] ) = Π k = 0 l o g 2 N − 1   ( s g n [ c o s ( i k 2 k ∗ π 2 n t ) ] ) = Π k = 0 l o g 2 N − 1   ( s g n [ c o s ( i k 2 k ∗ π ( 2 n t ) ) ] ) = W ( i , 2 k t ) 根据以上定义\\ W_w(2^ki,t)=\Pi_{k=0}^{log_2N-1} \ (sgn[cos (i_k2^{n+k}*\pi t)])\\ =\Pi_{k=0}^{log_2N-1} \ (sgn[cos (i_k2^{k}*\pi 2^{n}t)])\\ =\Pi_{k=0}^{log_2N-1} \ (sgn[cos (i_k2^{k}*\pi (2^{n}t))])\\ =W(i,2^kt) 根据以上定义Ww(2ki,t)=Πk=0log2N1 (sgn[cos(ik2n+kπt)])=Πk=0log2N1 (sgn[cos(ik2kπ2nt)])=Πk=0log2N1 (sgn[cos(ik2kπ(2nt))])=W(i,2kt)

3. 对称性 W ( i , t ) = W ( t , i ) 3.对称性W(i,t)=W(t,i) 3.对称性W(i,t)=W(t,i)

沃尔什变换

将以上正交函数集拼成矩阵 W a l ( N ) , 另外还有一种哈达玛排列的形式 将以上正交函数集拼成矩阵Wal(N),另外还有一种哈达玛排列的形式 将以上正交函数集拼成矩阵Wal(N),另外还有一种哈达玛排列的形式

f ( t ) ⟶ 1 N W a l ( N ) W ( n ) W ( n ) = 1 N W a l ( N ) f ( t ) f(t)\stackrel{\frac{1}{N}Wal(N)}{\longrightarrow} { \color{blue} W(n)}\\ { \color{blue} W(n) } = \frac{1}{N}Wal(N)f(t) f(t)N1Wal(N)W(n)W(n)=N1Wal(N)f(t)

沃尔什变换的性质

1. 时间模二加性质 1.时间模二加性质 1.时间模二加性质1:
模 2 加的第 n 个元素(坐标,内积结果): 1 N ∑ t = 0 N − 1 f ( t ⊕ l ) ∗ W ( n , t ) 令 r = t ⊕ l , 则 t = r ⊕ l 1 N ∑ t = 0 N − 1 f ( t ⊕ l ) ∗ W ( n , t )                          = 1 N ∑ r = 0 N − 1 f ( r ) ∗ W ( n , r ⊕ l ) 由性质 3 对称性和乘法关系 = 1 N ∑ r = 0 N − 1 f ( r ) ∗ W ( n , r ) W ( n , l )                          = [ 1 N ∑ r = 0 N − 1 f ( r ) ∗ W ( n , r ) ] W ( n , l )                          = [ 1 N ∑ r = 0 N − 1 f ( t ) ∗ W ( n , t ) ] W ( n , l )                          = W ( n ) W ( n , l )                                                       模2加的第n个元素(坐标,内积结果):\frac{1}{N}\sum_{t=0}^{N-1}f(t\oplus l )*W(n,t)\\ {\color{red} 令r=t\oplus l ,则t=r\oplus l} \\ \frac{1}{N}\sum_{t=0}^{N-1}f(t\oplus l )*W(n,t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =\frac{1}{N}\sum_{\color{red} r=0}^{N-1}f(r )*W(n,r\oplus l) {\tiny 由性质3对称性和乘法关系} \\ =\frac{1}{N}\sum_{\color{red} r=0}^{N-1}f(r )*W(n,r)W(n, l) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =[\frac{1}{N}\sum_{\color{red} r=0}^{N-1}f(r )*W(n,r)]W(n, l) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =[\frac{1}{N}\sum_{\color{red} r=0}^{N-1}f(t )*W(n,t)]W(n, l) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ ={ \color{blue} W(n) } W(n, l) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2加的第n个元素(坐标,内积结果):N1t=0N1f(tl)W(n,t)r=tl,t=rlN1t=0N1f(tl)W(n,t)                        =N1r=0N1f(r)W(n,rl)由性质3对称性和乘法关系=N1r=0N1f(r)W(n,r)W(n,l)                        =[N1r=0N1f(r)W(n,r)]W(n,l)                        =[N1r=0N1f(t)W(n,t)]W(n,l)                        =W(n)W(n,l)                                                     

2. 模 2 移位卷积定理 2.模2移位卷积定理 2.2移位卷积定理
2. 模 2 移位相关定理 2.模2移位相关定理 2.2移位相关定理
{ f 1 ( t ) } ⇔ { W 1 ( n ) }    , { f 2 ( t ) } ⇔ { W 2 ( n ) } { C 12 ( t ) } ⇔ { W 1 ( n ) ∗ W 2 ( n ) } \color{red}\{f_1(t)\} \Leftrightarrow \{W_1(n)\} \ \ , \color{red}\{f_2(t)\} \Leftrightarrow \{W_2(n)\}\\ \{C_{12}(t)\} \Leftrightarrow \{W_1(n)*W_2(n)\} {f1(t)}{W1(n)}  ,{f2(t)}{W2(n)}{C12(t)}{W1(n)W2(n)}
相关: K 12 ( t ) = 1 N ∑ l = 0 N − 1 f 1 ( l ) f 2 ( t ⊕ l ) 卷积: C 12 ( t ) = 1 N ∑ l = 0 N − 1 f 1 ( l ) f 2 ( t ⊖ l ) = 1 N ∑ l = 0 N − 1 f 1 ( l ) f 2 ( t ⊕ l ) 证明: 1 N ∑ t = 0 N − 1 C 12 ( t ) ∗ W ( n , t ) = 1 N ∑ t = 0 N − 1 [ 1 N ∑ l = 0 N − 1 f 1 ( l ) f 2 ( t ⊕ l ) ] ∗ W ( n , t ) 换序 = 1 N ∑ l = 0 N − 1 [ 1 N ∑ t = 0 N − 1 f 1 ( l ) f 2 ( t ⊕ l ) ∗ W ( n , t ) ] = 1 N ∑ l = 0 N − 1 f 1 ( l ) [ 1 N ∑ t = 0 N − 1 f 2 ( t ⊕ l ) ∗ W ( n , t ) ] = 1 N ∑ l = 0 N − 1 f 1 ( l ) [ W 2 ( n ) ∗ W ( n , l ) ] 模二加性质 = W 2 ( n ) 1 N ∑ l = 0 N − 1 f 1 ( l ) ∗ W ( n , l )                    = W 2 ( n ) ∗ W 1 ( n )                                         相关:K_{12}(t)={\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_2(t\oplus l)\\ 卷积:C_{12}(t)={\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_2(t\ominus l)={\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_2(t\oplus l)\\ 证明: \frac{1}{N}\sum_{t=0}^{N-1} C_{12}(t) *W(n,t)\\ = \frac{1}{N}\sum_{t=0}^{N-1} [\frac{1}{N}\sum_{l=0}^{N-1}f_1(l)f_2(t\oplus l) ]*W(n,t)\\ {\color{red} 换序}\\ = \frac{1}{N}\sum_{l=0}^{N-1} [\frac{1}{N}\sum_{t=0}^{N-1}f_1(l)f_2(t\oplus l) *W(n,t)]\\ = \frac{1}{N}\sum_{l=0}^{N-1}f_1(l) [\frac{1}{N}\sum_{t=0}^{N-1}f_2(t\oplus l) *W(n,t)]\\ = \frac{1}{N}\sum_{l=0}^{N-1} f_1(l) {\color{red} [W_2(n) *W(n,l)]} {\tiny 模二加性质}\\ =W_2(n) \frac{1}{N}\sum_{l=0}^{N-1} {\color{red} f_1(l) *W(n,l)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =W_2(n) *W_1(n) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 相关:K12(t)=N1l=0N1f1(l)f2(tl)卷积:C12(t)=N1l=0N1f1(l)f2(tl)=N1l=0N1f1(l)f2(tl)证明:N1t=0N1C12(t)W(n,t)=N1t=0N1[N1l=0N1f1(l)f2(tl)]W(n,t)换序=N1l=0N1[N1t=0N1f1(l)f2(tl)W(n,t)]=N1l=0N1f1(l)[N1t=0N1f2(tl)W(n,t)]=N1l=0N1f1(l)[W2(n)W(n,l)]模二加性质=W2(n)N1l=0N1f1(l)W(n,l)                  =W2(n)W1(n)                                       

3. 帕斯瓦尔定理 3.帕斯瓦尔定理 3.帕斯瓦尔定理

卷积: C 11 ( t ) = 1 N ∑ l = 0 N − 1 f 1 ( l ) f 1 ( t ⊕ l ) = ∑ n = 0 N − 1 ( W 1 ( n ) ∗ W 1 ( n ) ) ∗ W ( n , t ) 令 t = 0 ; 1 N ∑ l = 0 N − 1 f 1 ( l ) f 1 ( l ) = ∑ n = 0 N − 1 ( W 1 ( n ) ∗ W 1 ( n ) ) ∗ W ( n , 0 ) 1 N ∑ l = 0 N − 1 f 1 ( l ) f 1 ( l ) = ∑ n = 0 N − 1 ( W 1 ( n ) ∗ W 1 ( n ) ) ∗ 1 开始一段都是 1 卷积:C_{11}(t)\\ ={\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_1(t\oplus l)\\ =\sum_{{\color{red} n=0}}^{N-1} (W_1(n) *W_1(n)) * W(n,t)\\ 令t=0;\\ {\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_1( l) =\sum_{{\color{red} n=0}}^{N-1} (W_1(n) *W_1(n)) * W(n,0)\\ {\color{red} \frac{1}{N}}\sum_{{\color{red} l=0}}^{N-1}f_1(l)f_1( l) =\sum_{{\color{red} n=0}}^{N-1} (W_1(n) *W_1(n)) * 1{\tiny 开始一段都是1}\\ 卷积:C11(t)=N1l=0N1f1(l)f1(tl)=n=0N1(W1(n)W1(n))W(n,t)t=0;N1l=0N1f1(l)f1(l)=n=0N1(W1(n)W1(n))W(n,0)N1l=0N1f1(l)f1(l)=n=0N1(W1(n)W1(n))1开始一段都是1

CG

相关解释

  • 序号2.后面的累乘符号的“n=0到log(N-1)”是否应该是“1到log(N)”呢?
  • 首先第一点上边的沃尔什函数的定义就是从0开始的。而且使用1到log(N),那就是去掉Ww(0,t)=1这个作为群的单位元的函数,直接把群的性质给移除了。许多相关的好的性质都没了。

  1. 输入序列 f ( t ) = { 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 } , 对序列进行 l = 3 的模 2 移位 t ⊕ 3 = { t 转为二进制按位 ⊕ ,然后转为十进制 } f ( t ⊕ 3 ) = { 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 } 。变换得到 W ( n ) = { 1 2 , 0 , 1 2 , 0 , 0 , 0 , 0 , 0 } W ( n ) W ( n , l ) = W ( n ) W ( n , 3 ) = { 1 2 , 0 , − 1 2 , 0 , 0 , 0 , 0 , 0 } 因为 W ( n , 3 ) 为 1 或 − 1 , f ( t ) 变换后功率不变。 输入序列f(t)=\{0,0,1,1,0,0,1,1\},对序列进行l=3的模2移位\\ t\oplus 3=\{t转为二进制 按位\oplus,然后转为十进制 \} \\ f(t\oplus 3)=\{1,1,0,0,1,1,0,0\}。变换得到W(n)=\{ \frac{1}{2},0,\frac{1}{2},0,0,0,0,0 \}\\ { \color{blue} W(n) } W(n, l)={ \color{blue} W(n) } W(n, 3)=\{ \frac{1}{2},0,-\frac{1}{2},0,0,0,0,0 \}\\ 因为W(n, 3)为1或-1,f(t)变换后功率不变。 输入序列f(t)={0,0,1,1,0,0,1,1},对序列进行l=3的模2移位t3={t转为二进制按位,然后转为十进制}f(t3)={1,1,0,0,1,1,0,0}。变换得到W(n)={21,0,21,0,0,0,0,0}W(n)W(n,l)=W(n)W(n,3)={21,0,21,0,0,0,0,0}因为W(n,3)11f(t)变换后功率不变。 ↩︎

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值