Buy or Build UVA - 1151 (最小生成树+枚举集合)

传送门

题意:现在在一个图上有n的点,每个点给出相应的坐标,然后两个点之间的距离就是欧几里得距离,之后还有几个套餐,套餐具有相应的价钱,套餐会把套餐内所给的点联通,最后问最小花费是多少呢?

题解:如果首先枚举集合的话呢?那么每次枚举完之后都会再进行一次求解最小生成树的过程,这样复杂度很高啊,首先枚举集合就有o(n^2)的复杂度,然后求解最小生成树又是o(logn)的排序加o(n)的贪心,复杂度要爆炸啊,所以可不可以只求一次最小生成树呢?如果我们记下第一次不要套餐时的最小生成树的边都是哪些边,那么是不是就可以直接枚举套餐,然后再从选出最小生成树的边中选出那些需要的边,这种思想肯定是正确的,证明也是非常简单,如果此时枚举套餐时,将部分点联通了,那么其他点必然要联通,怎么才能使得花费最小呢?肯定还是从小到打排序,然后还是看是否已经联通,联通了跳过即可,如果没有联通那么就得加上此时这条边,直到所有的点联通即可。

附上代码:


#include<bits/stdc++.h>

using namespace std;

const int maxn=1e3+10;
const int maxq=8;

int n;
int x[maxn],y[maxn],cost[maxq];
vector<int>subn[maxq];

int f[maxn];

int find(int x)
{
    if(f[x]==x){
        return x;
    }else{
        return f[x]=find(f[x]);
    }
}

struct Edge{
    int u,v,d;
    Edge(int _u,int _v,int _d):u(_u),v(_v),d(_d){}
    bool operator < (const Edge &rhs)const{
        return d<rhs.d;
    }
};

int mst(int cnt,const vector<Edge>&e,vector<Edge>&used)
{
    if(cnt==1){
        return 0;
    }
    int m=e.size();
    int ans=0;
    used.clear();
    for(int i=0;i<m;i++){
        int u=find(e[i].u),v=find(e[i].v);
        int d=e[i].d;
        if(u!=v){
            f[v]=u;
            ans+=d;
            used.push_back(e[i]);
            if(--cnt==1){
                break;
            }
        }
    }
    return ans;
}

int main()
{
    int T,q;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&q);
        for(int i=0;i<q;i++){
            int cnt;
            scanf("%d%d",&cnt,&cost[i]);
            subn[i].clear();
            while(cnt--){
                int u;
                scanf("%d",&u);
                subn[i].push_back(u-1);
            }
        }
        for(int i=0;i<n;i++){
            scanf("%d%d",&x[i],&y[i]);
        }
        vector<Edge>e,need;
        for(int i=0;i<n;i++){
            for(int j=i+1;j<n;j++){
                int c=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
                e.push_back(Edge(i,j,c));
            }
        }
        for(int i=0;i<n;i++){
            f[i]=i;
        }
        sort(e.begin(),e.end());
        int ans=mst(n,e,need);
        for(int mask=0;mask<(1<<q);mask++){
            for(int i=0;i<n;i++){
                f[i]=i;
            }
            int cnt=n,c=0;
            for(int i=0;i<q;i++){
                if(mask&(1<<i)){
                    c+=cost[i];
                    for(int j=1;j<subn[i].size();j++){
                        int u=find(subn[i][0]),v=find(subn[i][j]);
                        if(u!=v){
                            f[u]=v;
                            cnt--;
                        }
                    }
                }
            }
            vector<Edge>dummy;
            ans=min(ans,c+mst(cnt,need,dummy));
        }
        printf("%d\n",ans);
        if(T){
            printf("\n");
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值