题意:现在在一个图上有n的点,每个点给出相应的坐标,然后两个点之间的距离就是欧几里得距离,之后还有几个套餐,套餐具有相应的价钱,套餐会把套餐内所给的点联通,最后问最小花费是多少呢?
题解:如果首先枚举集合的话呢?那么每次枚举完之后都会再进行一次求解最小生成树的过程,这样复杂度很高啊,首先枚举集合就有o(n^2)的复杂度,然后求解最小生成树又是o(logn)的排序加o(n)的贪心,复杂度要爆炸啊,所以可不可以只求一次最小生成树呢?如果我们记下第一次不要套餐时的最小生成树的边都是哪些边,那么是不是就可以直接枚举套餐,然后再从选出最小生成树的边中选出那些需要的边,这种思想肯定是正确的,证明也是非常简单,如果此时枚举套餐时,将部分点联通了,那么其他点必然要联通,怎么才能使得花费最小呢?肯定还是从小到打排序,然后还是看是否已经联通,联通了跳过即可,如果没有联通那么就得加上此时这条边,直到所有的点联通即可。
附上代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+10;
const int maxq=8;
int n;
int x[maxn],y[maxn],cost[maxq];
vector<int>subn[maxq];
int f[maxn];
int find(int x)
{
if(f[x]==x){
return x;
}else{
return f[x]=find(f[x]);
}
}
struct Edge{
int u,v,d;
Edge(int _u,int _v,int _d):u(_u),v(_v),d(_d){}
bool operator < (const Edge &rhs)const{
return d<rhs.d;
}
};
int mst(int cnt,const vector<Edge>&e,vector<Edge>&used)
{
if(cnt==1){
return 0;
}
int m=e.size();
int ans=0;
used.clear();
for(int i=0;i<m;i++){
int u=find(e[i].u),v=find(e[i].v);
int d=e[i].d;
if(u!=v){
f[v]=u;
ans+=d;
used.push_back(e[i]);
if(--cnt==1){
break;
}
}
}
return ans;
}
int main()
{
int T,q;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
for(int i=0;i<q;i++){
int cnt;
scanf("%d%d",&cnt,&cost[i]);
subn[i].clear();
while(cnt--){
int u;
scanf("%d",&u);
subn[i].push_back(u-1);
}
}
for(int i=0;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
}
vector<Edge>e,need;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
int c=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
e.push_back(Edge(i,j,c));
}
}
for(int i=0;i<n;i++){
f[i]=i;
}
sort(e.begin(),e.end());
int ans=mst(n,e,need);
for(int mask=0;mask<(1<<q);mask++){
for(int i=0;i<n;i++){
f[i]=i;
}
int cnt=n,c=0;
for(int i=0;i<q;i++){
if(mask&(1<<i)){
c+=cost[i];
for(int j=1;j<subn[i].size();j++){
int u=find(subn[i][0]),v=find(subn[i][j]);
if(u!=v){
f[u]=v;
cnt--;
}
}
}
}
vector<Edge>dummy;
ans=min(ans,c+mst(cnt,need,dummy));
}
printf("%d\n",ans);
if(T){
printf("\n");
}
}
return 0;
}