设计铁路(BZOJ2153)(斜率dp)

传送门

题意:直接看题意即可

题解:第一眼看上去能否贪心,发现没啥好办法,然后考虑dp,按照T从头到尾考虑发现也是没啥好办法,从后往前进行dp,我们设dp[i]为当前在i下强行修建车站的花费,然后我们发现递推式:

dp[i]=min(dp[j]+m+\sum_{j<k<=i}(R[k]*(T[k]-T[i])))

然后考虑展开,我们再设sumt[]为R[]*T[]的前缀和,之后再设sum[]为R[]的前缀和,然后写出式子:

dp[i]=min(dp[j]+m+sumt[i]-sumt[j]-T[i]*sum[i]+T[i]*sum[j])

然后将与min无关的挪出去,写出式子:

dp[i]=min(d[j]-sumt[j]+T[i]*sum[j])+m-sumt[i]-T[i]*sum[i]

然后设y=dp[j]-sumt[j],设k=-T[i],设x=sum[j],之后可以发现斜率k是不断递增的,然后x也是不断递增,然后点的横坐标也在不断递增,这就是斜率dp的模型了,之后用单调队列维护一个下凸壳即可。

提示一下,就是最后还要多加一个点,就是排序前需要再加一个sta[n+1].t=0,sta[n+1].r=0的点,因为我们从后往前考虑,没有这个点相当于所有点到了n这个点就停了,实际上还有一段没有算,最后只要把在0点修建的这个车站的费用减去即可,这个点坑了我一晚上,在床上想了想就出来了,感觉自己的斜率dp代码挺好的,利用叉积不用考虑斜率的浮点数比较,还是非常靠谱的。

附上代码:


#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

const int maxn=4e4+50;

ll n,m;

struct node{
    ll t,r;
    node(ll t=0,ll r=0):t(t),r(r){}
};
node sta[maxn];

bool cmp(node a,node b)
{
    return a.t>b.t;
}

struct point{
    ll x,y;
    point(ll x=0,ll y=0):x(x),y(y){}
};
point q[maxn];
int head,tail;

ll multi(point o,point a,point b)
{
    return (a.x-o.x)*(b.y-o.y)-(a.y-o.y)*(b.x-o.x);
}

ll dp[maxn];
ll sumt[maxn],sum[maxn];

int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%lld%lld",&sta[i].t,&sta[i].r);
    }
    n++;
    sta[n].t=0;sta[n].r=0;
    sort(sta+1,sta+n+1,cmp);
    for(int i=1;i<=n;i++){
        sum[i]=sum[i-1]+sta[i].r;
        sumt[i]=sumt[i-1]+sta[i].r*sta[i].t;
    }
    dp[0]=0;
    head=tail=0;
    q[tail++]=point(0,0);
    for(int i=1;i<=n;i++){
        while(head+1<tail&&q[head].y+sta[i].t*q[head].x>=q[head+1].y+sta[i].t*q[head+1].x){
            head++;
        }
        dp[i]=q[head].y+sta[i].t*q[head].x+sumt[i]-sta[i].t*sum[i];
        if(i!=n){
            dp[i]+=m;
        }
        point p=point(sum[i],dp[i]-sumt[i]);
        while(head+1<tail&&multi(q[tail-2],q[tail-1],p)<0){
            tail--;
        }
        q[tail++]=p;
    }
    printf("%lld\n",dp[n]);
    return 0;
}

 

 

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值