BZOJ1005: [HNOI2008]明明的烦恼(purfer编码)

  题意:传送门
  题解:参考源自传送门
  一个含有 n 个节点的 P u r f e r S e q u e n c e Purfer Sequence PurferSequence n − 2 n-2 n2 个数, P u r f e r S e q u e n c e Purfer Sequence PurferSequence 中的每个数是 1 ∼ n 1\sim n 1n 中的一个数
  一个定理:一个 P u r f e r S e q u e n c e Purfer Sequence PurferSequence和一棵树一一对应
  首先了解由一个树得到 P u r f e r S e q u e n c e Purfer Sequence PurferSequence,由一棵树得到它的 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 总共需要 n − 2 n-2 n2 步,每一步都在当前的树中寻找具有最小标号的叶子节点(度为 1 1 1),将与其相连的点的标号设为 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 的第 i i i 个元素,并将此叶子节点从树中删除,直到最后得到一个长度为 n − 2 n-2 n2 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 和一个只有两个节点的树,具体例子参考上述博客。
  其次需要了解由 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 得到一棵树,先将所有编号为 1 1 1 n n n 的点的度赋初值为 1 1 1,然后加上它在 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 中出现的次数,得到每个点的度,先执行 n − 2 n-2 n2 步,每一步,选取具有最小标号的度为 1 1 1 的点 u u u P u r f e r S e q u e n c e Purfer Sequence PurferSequence 中的第 i i i 个数 v v v 表示的顶点相连,得到树中的一条边,并将 u u u v v v 的度减一,最后再把剩下的两个度为 1 1 1 的点连边,加入到树中,具体例子参考上述博客。
  有了上述这些知识后,看下这个题如何做呢?每个树加了度数限制,先不考虑无解的情况,从 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 构造树的过程中可知,一个点的度数减一表示它在 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 中出现了几次,那么:
  假设度数有限制的点的数量为 c n t cnt cnt,他们的度数分别为: d [ i ] d[i] d[i],设 s u m = ∑ i = 1 c n t ( d [ i ] − 1 ) sum=\sum_{i=1}^{cnt}(d[i]-1) sum=i=1cnt(d[i]1)
  那么,在 Purfer Sequence 中的不同排列的总数为:
C n − 2 s u m ∗ s u m ! ∏ i = 1 c n t ( d [ i ] − 1 ) ! C_{n-2}^{sum}*\frac{sum!}{\prod_{i=1}^{cnt}(d[i]-1)!} Cn2sumi=1cnt(d[i]1)!sum!
  而剩下的 n-2-sum 个位置,可以随意的排列剩余的 n-cnt 个点,于是,总的方案数就应该是:
C n − 2 s u m ∗ s u m ! ∏ i = 1 c n t ( d [ i ] − 1 ) ! ∗ ( n − c n t ) n − 2 − s u m C_{n-2}^{sum}*\frac{sum!}{\prod_{i=1}^{cnt}(d[i]-1)!}*(n-cnt)^{n-2-sum} Cn2sumi=1cnt(d[i]1)!sum!(ncnt)n2sum
  化简之后为:
( n − 2 ) ! s u m ! ∗ ∏ i = 2 c n t ( d [ i ] − 1 ) ! ∗ ( n − c n t ) n − 2 − s u m \frac{(n-2)!}{sum!*\prod_{i=2}^{cnt}(d[i]-1)!}*(n-cnt)^{n-2-sum} sum!i=2cnt(d[i]1)!(n2)!(ncnt)n2sum
  判断有解和无解其实也是非常容易的,不能构成 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 编码的无非是 0 0 0 或者 1 1 1 的情况或者其他点数的情况,这两个可以直接通过度数判断,但是能构成 P u r f e r S e q u e n c e Purfer Sequence PurferSequence 的情况下,有的点数超过了 n − 1 n-1 n1 或者等于了 0 0 0,这样肯定也是构不成这样的树的。

import java.util.*;
import java.math.*;
 
public class Main {
    static int n, d[]=new int[10002];
    static BigInteger p[]=new BigInteger[1002];
    static BigInteger ans;
     
    static public void main(String args[]) {
        Scanner IN=new Scanner(System.in);
        n=IN.nextInt();
        int sum=0, flag=0, cnt=0;
        for(int i=0; i<n; i++) {
            d[i]=IN.nextInt();
            if(d[i]==0 || d[i]>n-1) flag=1;
            if(d[i]==-1) continue;
            sum+=d[i]-1;
            cnt++;
        }
        IN.close();
        if(n==1) {
            if(d[0]==0 || d[0]==-1) System.out.println(1);
            else System.out.println(0);
            return;
        }
        if(n==2) {
            if((d[0]==-1 || d[0]==1) && (d[1]==-1 || d[1]==-1)) System.out.println(1);
            else System.out.println(0);
            return;
        }
        if(flag==1) System.out.println(0);
        p[0]=BigInteger.ONE;
        for(int i=1; i<=n; i++) p[i]=p[i-1].multiply(BigInteger.valueOf(i));
        ans=p[n-2].divide(p[n-2-sum]);
        for(int i=0; i<n; i++) {
            if(d[i]==-1) continue;
            ans=ans.divide(p[d[i]-1]);
        }
        for(int i=0; i<n-2-sum; i++) ans=ans.multiply(BigInteger.valueOf(n-cnt)); 
        System.out.println(ans);
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值