目录
学习完吴恩达老师机器学习课程的正则化,简单的做个笔记。文中部分描述属于个人消化后的理解,仅供参考。
如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~
0. 前言
在分类或者回归时,通常存在两个问题,“过拟合”(overfitting)和“欠拟合”(underfitting).
- 过拟合:曲线为了减少代价函数,一味地拟合数据,使得样本中几乎每一个数据都能正确被分类(回归),导致过度拟合,不能泛化新的样本,通常具有高方差(high variance)
- 欠拟合:曲线的拟合度不够,太多的数据并没有被拟合到,通常具有高偏差(high bias)
通常,在过拟合的情况中,存在过量的特征,有以下两种解决办法:
- 减少特征量
- 采用正则化
1. 正则化(Regularization)
由于造成过拟合的原因可能是太多的特征量,所以可采用减少特征量的方法。但是不妨换种思路,减少特征量的权值(这个特征乘以的 很小),来达到目的。
例如,对于 ,已知 的关联度不大,我们需要减少它的权值(),可将代价函数修改为 ,这样为了降低 ,就会使得 ,达到了减小特征的目的。
但是通常,我们不知道哪些特征量是无关的,所以给出修改后的代价函数定义:
其中, 称为正则化参数, 称为正则项,目的是使得 减小。正则化使得假设函数更加简单,减小发生过拟合概率。
注:如果 过大,会造成 ,使得 ,造成欠拟合。
2. 线性回归中的正则化
在线性回归中运用正则化,我们已知代价函数和梯度下降法如下定义:
代入可得:
其中,,所以相当于 乘以一定的权值,然后再减去梯度下降的变化量。
同样,在正规方程中,也可以使用正则化:
此时,可以保证,中间项一定不是奇异矩阵,一定存在逆矩阵。
3. 逻辑回归中的正则化
与上述类似,代价函数可表示为:
梯度下降法可表示为:
逻辑回归中的 是在 外包裹了一层 函数的,与线性回归不同,所以梯度下降法看似相同却不同。
如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~