吴恩达机器学习(十五)大规模机器学习(Batch、Stochastic、Mini-batch gradient descent、MapReduce)

这篇博客总结了吴恩达机器学习课程中关于大规模机器学习的内容,包括Stochastic Gradient Descent、Mini-batch Gradient Descent和MapReduce的优化方法。Stochastic Gradient Descent通过随机选取样本进行参数更新,而Mini-batch Gradient Descent则在每次更新时使用一部分样本。MapReduce则利用分布式计算加速训练过程。此外,还介绍了在线学习的概念,即模型随着新数据的到达实时更新参数。
摘要由CSDN通过智能技术生成

目录

0. 前言

1. Stochastic Gradient Descent

2. Mini-batch Gradient Descent

3. MapReduce

4. 在线学习(online learning)


学习完吴恩达老师机器学习课程的大规模机器学习,简单的做个笔记。文中部分描述属于个人消化后的理解,仅供参考。

如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~

0. 前言

已知梯度下降算法 \theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})x_{j}^{(i)} ,当数据集 m 很大时,每一次更新 \theta 所需的时间很长,何况需多次迭代,所需时间太久。所以对此优化,有以下几种优化方法:

  • Stochastic gradient descent
  • Mini-batch gradient descent
  • MapReduce

1. Stochastic Gradient Descent

Stochastic gradient descent(随机梯度下降)的算法流程如下:

易得,算法先根据 (x^{(1)},y^{(1)}) 对 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值