目录
1. Stochastic Gradient Descent
2. Mini-batch Gradient Descent
学习完吴恩达老师机器学习课程的大规模机器学习,简单的做个笔记。文中部分描述属于个人消化后的理解,仅供参考。
如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~
0. 前言
已知梯度下降算法 ,当数据集 很大时,每一次更新 所需的时间很长,何况需多次迭代,所需时间太久。所以对此优化,有以下几种优化方法:
- Stochastic gradient descent
- Mini-batch gradient descent
- MapReduce
1. Stochastic Gradient Descent
Stochastic gradient descent(随机梯度下降)的算法流程如下:
易得,算法先根据 对