黄金连分数

黄金分割数0.61803… 是个无理数,这个常数十分重要,在许多工程问题中会出现。
有时需要把这个数字求得很精确。

对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,

它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,
其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!

言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。

比较简单的一种是用连分数:

              1
黄金数 = ---------------------
                    1
         1 + -----------------
                      1
             1 + -------------
                        1
                 1 + ---------
                      1 + ...



这个连分数计算的“层数”越多,它的值越接近黄金分割数。

请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。

小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340

(注意尾部的0,不能忽略)

你的任务是:写出精确到小数点后100位精度的黄金分割值。

注意:尾数的四舍五入! 尾数是0也要保留!

就是一种找规律题,但我是没发现有什么规律。。。。。搜的方法,看着挺不错。
#include <stdio.h>
#define F 50
int main()
{

    unsigned long long int fib[1000], x, y;
    int f = 0, i;
    int a[105];
    fib[0] = 0;
    fib[1] = 1;

    for(i = 2; fib[i] < 1e18; i++)
    {
        fib[i] = fib[i-1] + fib[i-2];
        f++;
    }

    x = fib[F-2];
    y = fib[F-1];

    for(i = 0; i < 101; i++)
    {
        a[i] = x / y;
        x = (x % y) * 10;
        printf("%d", a[i]);
    }
    printf("\n");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值