力扣977 有序数组的平方
题目链接:. - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解: 双指针法经典题目 | LeetCode:977.有序数组的平方_哔哩哔哩_bilibili
思路:考虑到昨天学习的双指针,第一想法是先用快指针更新数组元素平方后的值,慢指针将新元素位置更新。一开始想通过找到中间的最小值排序,但发现难以实现,看了讲解后恍然大悟,可以从数组两边开始,计算出平方后将两边进行比较。将较大的值从后往前存入数组,实现非递减排序。
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int k = nums.size()-1;
vector<int> result(nums.size(), 0);
int j = k;
for(int i = 0; i<=j;){
if(nums[i]*nums[i] > nums[j]*nums[j])
{
result[k--] = nums[i]*nums[i];
i++;
}
else
{
result[k--] = nums[j]*nums[j];
j--;
}
}
return result;
}
};
遇到的问题:写for循环条件时有些犹豫,再看了一下讲解,这里将判断条件写成i<=j刚好可以将所有元素比较一遍,然后在具体的if语句中更新i和j的值。
力扣209 长度最小的子数组
题目链接:. - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:拿下滑动窗口! | LeetCode 209 长度最小的子数组_哔哩哔哩_bilibili
思路:看到题目最先想到的就是暴力解法,学习了滑动窗口,调节起始位置和终止位置,找到合适的区间,如何元素和小于target终止位置向后移,如果元素和大于target,比较更新result并将起始位置向后移继续寻找。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int sum = 0;
int result = INT32_MAX;
int subLength = 0;
int i = 0;
for(int j = 0; j < nums.size(); j++)
{
sum += nums[j];
while(sum >= target)
{
subLength = j - i + 1;
result = result < subLength ? result : subLength;
sum -= nums[i++];
}
}
return result != INT32_MAX ? result : 0;
}
};
力扣59 螺旋矩阵II
题目链接:. - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:一入循环深似海 | LeetCode:59.螺旋矩阵II_哔哩哔哩_bilibili
思路:根据题目会生成n*n的矩阵,采用左闭右开的方式循环生成。一次循环完成一圈,先求出循环圈数,在大循环中拆出四个小循环完成矩阵的四个边。用startx和starty记录每一圈的起始位置。如果n是奇数,需要补充中间位置的元素。
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n,0));
int startx = 0, starty = 0;
int loop = n / 2;
int count = 1;
int mid = n / 2;
int offset = 1;
while(loop--){
int i = startx;
int j = starty;
for(j; j < n-offset; j++)
{
res[i][j] = count++;
}
for(i; i < n-offset; i++)
{
res[i][j] = count++;
}
for(j; j > starty; j--)
{
res[i][j] = count++;
}
for(i; i > startx; i--)
{
res[i][j] = count++;
}
startx++;
starty++;
offset++;
}
if(n%2 == 1)
{
res[mid][mid] = n*n;
}
return res;
}
};
总结
二分法
二分法需要注意区间问题,左闭右闭或者左闭右开前后需要保持一致。
双指针
可以从一个方向开始,一个快指针一个慢指针。也可以从两个方向开始,更高效处理数组问题。
滑动窗口
调节子序列的起始位置与终止位置,一定程度利用已经求过的结论。